Microsystems & Nanoengineering最新文献

筛选
英文 中文
Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors 芯片心脏的结构设计和先进制造:支架、刺激和传感器
IF 7.9 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-07-11 DOI: 10.1038/s41378-024-00692-7
Feng Xu, Hang Jin, Lingling Liu, Yuanyuan Yang, Jianzheng Cen, Yaobin Wu, Songyue Chen, Daoheng Sun
{"title":"Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors","authors":"Feng Xu, Hang Jin, Lingling Liu, Yuanyuan Yang, Jianzheng Cen, Yaobin Wu, Songyue Chen, Daoheng Sun","doi":"10.1038/s41378-024-00692-7","DOIUrl":"https://doi.org/10.1038/s41378-024-00692-7","url":null,"abstract":"<p>Heart-on-a-chip (HoC) has emerged as a highly efficient, cost-effective device for the development of engineered cardiac tissue, facilitating high-throughput testing in drug development and clinical treatment. HoC is primarily used to create a biomimetic microphysiological environment conducive to fostering the maturation of cardiac tissue and to gather information regarding the real-time condition of cardiac tissue. The development of architectural design and advanced manufacturing for these “3S” components, scaffolds, stimulation, and sensors is essential for improving the maturity of cardiac tissue cultivated on-chip, as well as the precision and accuracy of tissue states. In this review, the typical structures and manufacturing technologies of the “3S” components are summarized. The design and manufacturing suggestions for each component are proposed. Furthermore, key challenges and future perspectives of HoC platforms with integrated “3S” components are discussed.</p><figure><p>Architecture design concepts of scaffolds, stimulation and sensors in chips.</p></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141610726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synchronization bandwidth enhancement induced by a parametrically excited oscillator. 参量激励振荡器诱导的同步带宽增强。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-07-08 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00709-1
Jiahao Song, Yutao Xu, Qiqi Yang, Ronghua Huan, Xueyong Wei
{"title":"Synchronization bandwidth enhancement induced by a parametrically excited oscillator.","authors":"Jiahao Song, Yutao Xu, Qiqi Yang, Ronghua Huan, Xueyong Wei","doi":"10.1038/s41378-024-00709-1","DOIUrl":"10.1038/s41378-024-00709-1","url":null,"abstract":"<p><p>The synchronization phenomenon in nature has been utilized in sensing and timekeeping fields due to its numerous advantages, including amplitude and frequency stabilization, noise reduction, and sensitivity improvement. However, the limited synchronization bandwidth hinders its broader application, and few techniques have been explored to enhance this aspect. In this paper, we conducted theoretical and experimental studies on the unidirectional synchronization characteristics of a resonator with phase lock loop oscillation. A novel enhancement method for the synchronization bandwidth using a parametrically excited MEMS oscillator is proposed, which achieves a remarkably large synchronization bandwidth of 8.85 kHz, covering more than 94% of the hysteresis interval. Importantly, the proposed method exhibits significant potential for high-order synchronization and frequency stabilization compared to the conventional directly excited oscillator. These findings present an effective approach for expanding the synchronization bandwidth, which has promising applications in nonlinear sensing, fully mechanical frequency dividers, and high-precision time references.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving consistency of flexible surface acoustic wave sensors with artificial intelligence 利用人工智能实现柔性表面声波传感器的一致性
IF 7.9 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-07-05 DOI: 10.1038/s41378-024-00727-z
Zhangbin Ji, Jian Zhou, Yihao Guo, Yanhong Xia, Ahmed Abkar, Dongfang Liang, Yongqing Fu
{"title":"Achieving consistency of flexible surface acoustic wave sensors with artificial intelligence","authors":"Zhangbin Ji, Jian Zhou, Yihao Guo, Yanhong Xia, Ahmed Abkar, Dongfang Liang, Yongqing Fu","doi":"10.1038/s41378-024-00727-z","DOIUrl":"https://doi.org/10.1038/s41378-024-00727-z","url":null,"abstract":"<p>Flexible surface acoustic wave technology has garnered significant attention for wearable electronics and sensing applications. However, the mechanical strains induced by random deformation of these flexible SAWs during sensing often significantly alter the specific sensing signals, causing critical issues such as inconsistency of the sensing results on a curved/flexible surface. To address this challenge, we first developed high-performance AlScN piezoelectric film-based flexible SAW sensors, investigated their response characteristics both theoretically and experimentally under various bending strains and UV illumination conditions, and achieved a high UV sensitivity of 1.71 KHz/(mW/cm²). To ensure reliable and consistent UV detection and eliminate the interference of bending strain on SAW sensors, we proposed using key features within the response signals of a single flexible SAW device to establish a regression model based on machine learning algorithms for precise UV detection under dynamic strain disturbances, successfully decoupling the interference of bending strain from target UV detection. The results indicate that under strain interferences from 0 to 1160 με the model based on the extreme gradient boosting algorithm exhibits optimal UV prediction performance. As a demonstration for practical applications, flexible SAW sensors were adhered to four different locations on spacecraft model surfaces, including flat and three curved surfaces with radii of curvature of 14.5, 11.5, and 5.8 cm. These flexible SAW sensors demonstrated high reliability and consistency in terms of UV sensing performance under random bending conditions, with results consistent with those on a flat surface.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printed energy devices: generation, conversion, and storage. 3D 打印能源设备:发电、转换和储存。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-07-02 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00708-2
Jin-Ho Son, Hongseok Kim, Yoonseob Choi, Howon Lee
{"title":"3D printed energy devices: generation, conversion, and storage.","authors":"Jin-Ho Son, Hongseok Kim, Yoonseob Choi, Howon Lee","doi":"10.1038/s41378-024-00708-2","DOIUrl":"10.1038/s41378-024-00708-2","url":null,"abstract":"<p><p>The energy devices for generation, conversion, and storage of electricity are widely used across diverse aspects of human life and various industry. Three-dimensional (3D) printing has emerged as a promising technology for the fabrication of energy devices due to its unique capability of manufacturing complex shapes across different length scales. 3D-printed energy devices can have intricate 3D structures for significant performance enhancement, which are otherwise impossible to achieve through conventional manufacturing methods. Furthermore, recent progress has witnessed that 3D-printed energy devices with micro-lattice structures surpass their bulk counterparts in terms of mechanical properties as well as electrical performances. While existing literature focuses mostly on specific aspects of individual printed energy devices, a brief overview collectively covering the wide landscape of energy applications is lacking. This review provides a concise summary of recent advancements of 3D-printed energy devices. We classify these devices into three functional categories; generation, conversion, and storage of energy, offering insight on the recent progress within each category. Furthermore, current challenges and future prospects associated with 3D-printed energy devices are discussed, emphasizing their potential to advance sustainable energy solutions.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustofluidics-enhanced biosensing with simultaneously high sensitivity and speed. 同时具有高灵敏度和高速度的声流体增强生物传感技术。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-06-29 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00731-3
Yuang Li, Yang Zhao, Yang Yang, Wenchang Zhang, Yun Zhang, Sheng Sun, Lingqian Zhang, Mingxiao Li, Hang Gao, Chengjun Huang
{"title":"Acoustofluidics-enhanced biosensing with simultaneously high sensitivity and speed.","authors":"Yuang Li, Yang Zhao, Yang Yang, Wenchang Zhang, Yun Zhang, Sheng Sun, Lingqian Zhang, Mingxiao Li, Hang Gao, Chengjun Huang","doi":"10.1038/s41378-024-00731-3","DOIUrl":"10.1038/s41378-024-00731-3","url":null,"abstract":"<p><p>Simultaneously achieving high sensitivity and detection speed with traditional solid-state biosensors is usually limited since the target molecules must passively diffuse to the sensor surface before they can be detected. Microfluidic techniques have been applied to shorten the diffusion time by continuously moving molecules through the biosensing regions. However, the binding efficiencies of the biomolecules are still limited by the inherent laminar flow inside microscale channels. In this study, focused traveling surface acoustic waves were directed into an acoustic microfluidic chip, which could continuously enrich the target molecules into a constriction zone for immediate detection of the immune reactions, thus significantly improving the detection sensitivity and speed. To demonstrate the enhancement of biosensing, we first developed an acoustic microfluidic chip integrated with a focused interdigital transducer; this transducer had the ability to capture more than 91% of passed microbeads. Subsequently, polystyrene microbeads were pre-captured with human IgG molecules at different concentrations and loaded for detection on the chip. As representative results, ~0.63, 2.62, 11.78, and 19.75 seconds were needed to accumulate significant numbers of microbeads pre-captured with human IgG molecules at concentrations of 100, 10, 1, and 0.1 ng/mL (~0.7 pM), respectively; this process was faster than the other methods at the hour level and more sensitive than the other methods at the nanomolar level. Our results indicated that the proposed method could significantly improve both the sensitivity and speed, revealing the importance of selective enrichment strategies for rapid biosensing of rare molecules.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation. 用于电生理学记录和可控神经化学调控的完全灵活的植入式神经探针。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-06-27 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00685-6
Mohammad Hassan Malekoshoaraie, Bingchen Wu, Daniela D Krahe, Zabir Ahmed, Stephen Pupa, Vishal Jain, Xinyan Tracy Cui, Maysamreza Chamanzar
{"title":"Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation.","authors":"Mohammad Hassan Malekoshoaraie, Bingchen Wu, Daniela D Krahe, Zabir Ahmed, Stephen Pupa, Vishal Jain, Xinyan Tracy Cui, Maysamreza Chamanzar","doi":"10.1038/s41378-024-00685-6","DOIUrl":"10.1038/s41378-024-00685-6","url":null,"abstract":"<p><p>Targeted delivery of neurochemicals and biomolecules for neuromodulation of brain activity is a powerful technique that, in addition to electrical recording and stimulation, enables a more thorough investigation of neural circuit dynamics. We have designed a novel, flexible, implantable neural probe capable of controlled, localized chemical stimulation and electrophysiology recording. The neural probe was implemented using planar micromachining processes on Parylene C, a mechanically flexible, biocompatible substrate. The probe shank features two large microelectrodes (chemical sites) for drug loading and sixteen small microelectrodes for electrophysiology recording to monitor neuronal response to drug release. To reduce the impedance while keeping the size of the microelectrodes small, poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically coated on recording microelectrodes. In addition, PEDOT doped with mesoporous sulfonated silica nanoparticles (SNPs) was used on chemical sites to achieve controlled, electrically-actuated drug loading and releasing. Different neurotransmitters, including glutamate (Glu) and gamma-aminobutyric acid (GABA), were incorporated into the SNPs and electrically triggered to release repeatedly. An in vitro experiment was conducted to quantify the stimulated release profile by applying a sinusoidal voltage (0.5 V, 2 Hz). The flexible neural probe was implanted in the barrel cortex of the wild-type Sprague Dawley rats. As expected, due to their excitatory and inhibitory effects, Glu and GABA release caused a significant increase and decrease in neural activity, respectively, which was recorded by the recording microelectrodes. This novel flexible neural probe technology, combining on-demand chemical release and high-resolution electrophysiology recording, is an important addition to the neuroscience toolset used to dissect neural circuitry and investigate neural network connectivity.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal noise-driven resonant sensors. 热噪声驱动谐振传感器
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-06-26 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00718-0
Yan Qiao, Alaaeldin Elhady, Mohamed Arabi, Eihab Abdel-Rahman, Wenming Zhang
{"title":"Thermal noise-driven resonant sensors.","authors":"Yan Qiao, Alaaeldin Elhady, Mohamed Arabi, Eihab Abdel-Rahman, Wenming Zhang","doi":"10.1038/s41378-024-00718-0","DOIUrl":"https://doi.org/10.1038/s41378-024-00718-0","url":null,"abstract":"<p><p>MEMS/NEMS resonant sensors hold promise for minute mass and force sensing. However, one major challenge is that conventional externally driven sensors inevitably encounter undesired intrinsic noise, which imposes a fundamental limitation upon their signal-to-noise ratio (SNR) and, consequently, the resolution. Particularly, this restriction becomes increasingly pronounced as sensors shrink to the nanoscale. In this work, we propose a counterintuitive paradigm shift that turns intrinsic thermal noise from an impediment to a constituent of the sensor by harvesting it as the driving force, obviating the need for external actuation and realizing 'noise-driven' sensors. Those sensors employ the dynamically amplified response to thermal noise at resonances for stimulus detection. We demonstrate that lightly damped and highly compliant nano-structures with high aspect ratios are promising candidates for this class of sensors. To overcome the phase incoherence of the drive force, three noise-enabled quantitative sensing mechanisms are developed. We validated our sensor paradigm by experimental demonstrating noise-driven pressure and temperature sensors. Noise-driven sensors offer a new opportunity for delivering practical NEMS sensors that can function at room temperature and under ambient pressure, and a development that suggests a path to cheaper, simpler, and low-power-consumption sensors.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elasto-inertial focusing and particle migration in high aspect ratio microchannels for high-throughput separation. 用于高通量分离的高纵横比微通道中的弹力惯性聚焦和粒子迁移。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-06-25 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00724-2
Selim Tanriverdi, Javier Cruz, Shahriar Habibi, Kasra Amini, Martim Costa, Fredrik Lundell, Gustaf Mårtensson, Luca Brandt, Outi Tammisola, Aman Russom
{"title":"Elasto-inertial focusing and particle migration in high aspect ratio microchannels for high-throughput separation.","authors":"Selim Tanriverdi, Javier Cruz, Shahriar Habibi, Kasra Amini, Martim Costa, Fredrik Lundell, Gustaf Mårtensson, Luca Brandt, Outi Tammisola, Aman Russom","doi":"10.1038/s41378-024-00724-2","DOIUrl":"10.1038/s41378-024-00724-2","url":null,"abstract":"<p><p>The combination of flow elasticity and inertia has emerged as a viable tool for focusing and manipulating particles using microfluidics. Although there is considerable interest in the field of elasto-inertial microfluidics owing to its potential applications, research on particle focusing has been mostly limited to low Reynolds numbers (Re<1), and particle migration toward equilibrium positions has not been extensively examined. In this work, we thoroughly studied particle focusing on the dynamic range of flow rates and particle migration using straight microchannels with a single inlet high aspect ratio. We initially explored several parameters that had an impact on particle focusing, such as the particle size, channel dimensions, concentration of viscoelastic fluid, and flow rate. Our experimental work covered a wide range of dimensionless numbers (0.05 < Reynolds number < 85, 1.5 < Weissenberg number < 3800, 5 < Elasticity number < 470) using 3, 5, 7, and 10 µm particles. Our results showed that the particle size played a dominant role, and by tuning the parameters, particle focusing could be achieved at Reynolds numbers ranging from 0.2 (1 µL/min) to 85 (250 µL/min). Furthermore, we numerically and experimentally studied particle migration and reported differential particle migration for high-resolution separations of 5 µm, 7 µm and 10 µm particles in a sheathless flow at a throughput of 150 µL/min. Our work elucidates the complex particle transport in elasto-inertial flows and has great potential for the development of high-throughput and high-resolution particle separation for biomedical and environmental applications.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene-based all-solid flexible electrochromic microsupercapacitor. 基于 MXene 的全固态柔性电致变色微型超级电容器。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-06-25 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00720-6
Shanlu Guo, Ruihe Zhu, Jingwei Chen, Weilin Liu, Yuxiang Zhang, Jianmin Li, Haizeng Li
{"title":"MXene-based all-solid flexible electrochromic microsupercapacitor.","authors":"Shanlu Guo, Ruihe Zhu, Jingwei Chen, Weilin Liu, Yuxiang Zhang, Jianmin Li, Haizeng Li","doi":"10.1038/s41378-024-00720-6","DOIUrl":"10.1038/s41378-024-00720-6","url":null,"abstract":"<p><p>With the increasing demand for multifunctional optoelectronic devices, flexible electrochromic energy storage devices are being widely recognized as promising platforms for diverse applications. However, simultaneously achieving high capacitance, fast color switching and large optical modulation range is very challenging. In this study, the MXene-based flexible in-plane microsupercapacitor was fabricated via a mask-assisted spray coating approach. By adding electrochromic ethyl viologen dibromide (EVB) into the electrolyte, the device showed a reversible color change during the charge/discharge process. Due to the high electronic conductivity of the MXene flakes and the fast response kinetics of EVB, the device exhibited a fast coloration/bleaching time of 2.6 s/2.5 s, a large optical contrast of 60%, and exceptional coloration efficiency. In addition, EVB acted as a redox additive to reinforce the energy storage performance; as a result, the working voltage window of the Ti<sub>3</sub>C<sub>2</sub>-based symmetric aqueous microsupercapacitor was extended to 1 V. Moreover, the device had a high areal capacitance of 12.5 mF cm<sup>-2</sup> with superior flexibility and mechanical stability and showed almost 100% capacitance retention after 100 bending cycles. The as-prepared device has significant potential for a wide range of applications in flexible and wearable electronics, particularly in the fields of camouflage, anticounterfeiting, and displays.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain sensor on a chip for quantifying the magnitudes of tensile stress on cells. 用于量化细胞拉伸应力大小的芯片应变传感器。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-06-25 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00719-z
Yuyin Zhang, Yue Wang, Hongze Yin, Jiahao Wang, Na Liu, Songyi Zhong, Long Li, Quan Zhang, Tao Yue
{"title":"Strain sensor on a chip for quantifying the magnitudes of tensile stress on cells.","authors":"Yuyin Zhang, Yue Wang, Hongze Yin, Jiahao Wang, Na Liu, Songyi Zhong, Long Li, Quan Zhang, Tao Yue","doi":"10.1038/s41378-024-00719-z","DOIUrl":"10.1038/s41378-024-00719-z","url":null,"abstract":"<p><p>During cardiac development, mechanotransduction from the in vivo microenvironment modulates cardiomyocyte growth in terms of the number, area, and arrangement heterogeneity. However, the response of cells to different degrees of mechanical stimuli is unclear. Organ-on-a-chip, as a platform for investigating mechanical stress stimuli in cellular mimicry of the in vivo microenvironment, is limited by the lack of ability to accurately quantify externally induced stimuli. However, previous technology lacks the integration of external stimuli and feedback sensors in microfluidic platforms to obtain and apply precise amounts of external stimuli. Here, we designed a cell stretching platform with an in-situ sensor. The in-situ liquid metal sensors can accurately measure the mechanical stimulation caused by the deformation of the vacuum cavity exerted on cells. The platform was applied to human cardiomyocytes (AC16) under cyclic strain (5%, 10%, 15%, 20 and 25%), and we found that cyclic strain promoted cell growth induced the arrangement of cells on the membrane to gradually unify, and stabilized the cells at 15% amplitude, which was even more effective after 3 days of culture. The platform's precise control and measurement of mechanical forces can be used to establish more accurate in vitro microenvironmental models for disease modeling and therapeutic research.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信