{"title":"基于弱耦合谐振腔恒驱动技术的双信号同步检测。","authors":"Han Li, Zhao Zhang, PeiYuan Zhu, GuoHua Zhang, Yongcun Hao, Honglong Chang","doi":"10.1038/s41378-025-00954-y","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for highly sensitive and accurate sensors has grown significantly, particularly in the field of Micro-Electro-Mechanical Systems technology. Mode-localized sensors based on weakly coupled resonators have garnered attention for their high sensitivity through amplitude ratio outputs. However, when measuring multiple signals by weakly coupled resonators, different signals can interfere with each other, causing high cross-sensitivity. This cross-sensitivity greatly complicates signal separation and makes accurate measurement extremely difficult, impacting system performance. To address this issue, the study proposes an innovative constant-drive technique of weakly coupled resonators. This technique significantly reduces crosstalk between signals while maintaining high sensitivity of amplitude ratio output. The method is theoretically validated by analyzing amplitude ratios under signal perturbations in non-damped conditions, demonstrating perfect elimination of cross-interference. Finite element analysis under damping conditions further validated the constant-drive technique, showing a cross-sensitivity of 0.054%, nearly three orders of magnitude lower than that of mode-localized sensors. Experimental validation confirmed the effectiveness of the proposed technique, with the cross-sensitivity of the mode-localized method measured at 26.3% and 28.7%, respectively, while the constant-frequency drive achieved significantly lower values of 3.1% and 1.1%. This demonstrates a successful reduction in cross-sensitivity by an order of magnitude, meeting the performance requirements for typical MEMS biaxial sensor applications. This method is highly significant for mode-localized sensors, offering potential for developing multi-signal measurement devices like multi-axis accelerometers, force sensor, electric field sensor and mass sensor.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"80"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synchronous detection of dual signals based on constant-drive technique of weakly coupled resonators.\",\"authors\":\"Han Li, Zhao Zhang, PeiYuan Zhu, GuoHua Zhang, Yongcun Hao, Honglong Chang\",\"doi\":\"10.1038/s41378-025-00954-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for highly sensitive and accurate sensors has grown significantly, particularly in the field of Micro-Electro-Mechanical Systems technology. Mode-localized sensors based on weakly coupled resonators have garnered attention for their high sensitivity through amplitude ratio outputs. However, when measuring multiple signals by weakly coupled resonators, different signals can interfere with each other, causing high cross-sensitivity. This cross-sensitivity greatly complicates signal separation and makes accurate measurement extremely difficult, impacting system performance. To address this issue, the study proposes an innovative constant-drive technique of weakly coupled resonators. This technique significantly reduces crosstalk between signals while maintaining high sensitivity of amplitude ratio output. The method is theoretically validated by analyzing amplitude ratios under signal perturbations in non-damped conditions, demonstrating perfect elimination of cross-interference. Finite element analysis under damping conditions further validated the constant-drive technique, showing a cross-sensitivity of 0.054%, nearly three orders of magnitude lower than that of mode-localized sensors. Experimental validation confirmed the effectiveness of the proposed technique, with the cross-sensitivity of the mode-localized method measured at 26.3% and 28.7%, respectively, while the constant-frequency drive achieved significantly lower values of 3.1% and 1.1%. This demonstrates a successful reduction in cross-sensitivity by an order of magnitude, meeting the performance requirements for typical MEMS biaxial sensor applications. This method is highly significant for mode-localized sensors, offering potential for developing multi-signal measurement devices like multi-axis accelerometers, force sensor, electric field sensor and mass sensor.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"80\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-025-00954-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00954-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Synchronous detection of dual signals based on constant-drive technique of weakly coupled resonators.
The demand for highly sensitive and accurate sensors has grown significantly, particularly in the field of Micro-Electro-Mechanical Systems technology. Mode-localized sensors based on weakly coupled resonators have garnered attention for their high sensitivity through amplitude ratio outputs. However, when measuring multiple signals by weakly coupled resonators, different signals can interfere with each other, causing high cross-sensitivity. This cross-sensitivity greatly complicates signal separation and makes accurate measurement extremely difficult, impacting system performance. To address this issue, the study proposes an innovative constant-drive technique of weakly coupled resonators. This technique significantly reduces crosstalk between signals while maintaining high sensitivity of amplitude ratio output. The method is theoretically validated by analyzing amplitude ratios under signal perturbations in non-damped conditions, demonstrating perfect elimination of cross-interference. Finite element analysis under damping conditions further validated the constant-drive technique, showing a cross-sensitivity of 0.054%, nearly three orders of magnitude lower than that of mode-localized sensors. Experimental validation confirmed the effectiveness of the proposed technique, with the cross-sensitivity of the mode-localized method measured at 26.3% and 28.7%, respectively, while the constant-frequency drive achieved significantly lower values of 3.1% and 1.1%. This demonstrates a successful reduction in cross-sensitivity by an order of magnitude, meeting the performance requirements for typical MEMS biaxial sensor applications. This method is highly significant for mode-localized sensors, offering potential for developing multi-signal measurement devices like multi-axis accelerometers, force sensor, electric field sensor and mass sensor.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.