{"title":"The Study of the Transient Dose Rate Effect on ROIC Pixels in Ultra-Large-Scale Infrared Detectors.","authors":"Yuan Liu, Bin Wang, Ziyuan Tang, Mengwei Chen, Hui Wang, Weitao Yang, Longsheng Wu","doi":"10.3390/mi16060700","DOIUrl":"10.3390/mi16060700","url":null,"abstract":"<p><p>Infrared image sensors are crucial across various industries. However, with technological advancements, the growing scale of infrared image sensors has made the impact of transient dose rate effects increasingly significant. It is necessary to conduct relevant radiation effect studies to provide the theoretical and data basis for future radiation-hardened design. This study explores the response of large-area N-wells in the readout circuit of infrared detectors to transient dose rate effects. The TCAD simulation results indicate that the expansive N-well area in the merged-design pixel units generates significant current pulses when exposed to gamma-ray irradiation. Specifically, at dose rates of 3 × 10<sup>11</sup> rad/s, 5 × 10<sup>11</sup> rad/s, 7 × 10<sup>11</sup> rad/s, and 9 × 10<sup>11</sup> rad/s, the pulse currents measured are 39 nA, 64 nA, 89 nA, and 119 nA, respectively. Due to the spatial constraints of the 55 nm merged design, the close proximity of the GND to the N-well creates a high potential barrier near the N-well, obstructing the path between the GND and the substrate, which results in the pulse current exhibiting a stepped-like characteristic.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-06-12DOI: 10.3390/mi16060701
Jiahang Wang, Yuhang Liu, Xiwen Lu, Yunlong Zhu, Chenyao Bai
{"title":"Design and Optimization of a Tapered Magnetic Soft Continuum Robot for Enhanced Navigation in Cerebral Vasculature.","authors":"Jiahang Wang, Yuhang Liu, Xiwen Lu, Yunlong Zhu, Chenyao Bai","doi":"10.3390/mi16060701","DOIUrl":"10.3390/mi16060701","url":null,"abstract":"<p><p>Magnetic soft continuum robots (MSCRs) have broad application advantages in vascular intervention; however, current MSCRs still face challenges in navigating the narrower and tortuous structure of the cerebral vasculature. To address this challenge, we propose a tapered MSCR (T-MSCR), which is designed to facilitate smooth navigation through microvascular structures via its miniature tip. Specifically, to optimize its bending ability, we combine the Gray Wolf Optimizer (GWO) with the Euler-Bernoulli beam theory and introduce a Discrete GWO (DGWO) approach to optimize the distribution of magnetic particles within the T-MSCR. We then demonstrate the optimization process of the T-MSCR's bending ability, comparing and analyzing its deflection angle and deformation characteristics, highlighting its capability to enter microvasculars. Furthermore, we demonstrate the magnetic steering and path selection capabilities of T-MSCR in a two-dimensional vascular model and its navigation performance in real-scale human vascular models. Finally, biocompatibility tests confirm that T-MSCR exhibits no toxicity to human cells, thereby laying a solid foundation for its clinical application. The proposed T-MSCR design and optimization are expected to provide a more efficient and feasible solution for future cerebrovascular interventions.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-06-12DOI: 10.3390/mi16060704
Feng Bu, Bo Fan, Rui Feng, Ming Zhou, Yiwang Wang
{"title":"Automatic Mode-Matching Method for MEMS Gyroscope Based on Fast Mode Reversal.","authors":"Feng Bu, Bo Fan, Rui Feng, Ming Zhou, Yiwang Wang","doi":"10.3390/mi16060704","DOIUrl":"10.3390/mi16060704","url":null,"abstract":"<p><p>Processing errors can result in an asymmetric stiffness distribution within a microelectromechanical system (MEMS) disk resonator gyroscope (DRG) and thereby cause a mode mismatch and reduce the mechanical sensitivity and closed-loop scale factor stability. This paper proposes an automatic mode-matching method that utilizes mode reversal to obtain the true resonant frequency of the operating state of a gyroscope for high-precision matching. This method constructs a gyroscope control system that contains a drive closed loop, sense force-to-rebalance (FTR) closed loop, and quadrature error correction closed loop. After the gyroscope was powered on and started up, the x- and y-axes were quickly switched to obtain the resonant frequencies of the two axes through a phase-locked loop (PLL), and the x-axis tuning voltage was automatically adjusted to match the two-axis frequency. The experimental results show that the method takes only 5 s to execute, the frequency matching accuracy reaches 0.01 Hz, the matching state can be maintained in the temperature range of -20 to 60 °C, and the fluctuation of the frequency split does not exceed 0.005 Hz.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-06-12DOI: 10.3390/mi16060703
Haitao Zhang, Bo Feng, Suoluosu Yang, Ruolin Ruan, Rong Zhang, Tongqiang Xiong, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong, Yanhua Fan, Xiaoqiong Zuo
{"title":"An Updated Review of BiCuSeO-Based Thermoelectric Materials.","authors":"Haitao Zhang, Bo Feng, Suoluosu Yang, Ruolin Ruan, Rong Zhang, Tongqiang Xiong, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong, Yanhua Fan, Xiaoqiong Zuo","doi":"10.3390/mi16060703","DOIUrl":"10.3390/mi16060703","url":null,"abstract":"<p><p>Since 2010, BiCuSeO has emerged as a captivating subject of investigation within the realm of thermoelectric materials. Its allure lies in a remarkable confluence of characteristics: a distinctive natural super-lattice structure, an elevated Seebeck coefficient, and a low thermal conductivity, all of which have collectively piqued the intense interest of scientists worldwide. Over the subsequent eight-year period, an extensive array of research endeavors has been meticulously carried out, delving deep into the multifaceted properties of BiCuSeO and exploring avenues for performance enhancement. In this comprehensive review, we embark on a detailed exploration of the fundamental properties of BiCuSeO, encompassing its preparation methodologies, as well as its thermoelectric and mechanical attributes. A thorough synthesis of diverse strategies for optimizing the composition and structure of BiCuSeO is presented, elucidating how these modifications contribute to the enhancement of its thermoelectric and mechanical performance. Finally, the current state of research on N-type BiCuSeO is systematically summarized, offering a panoramic view of the advancements and challenges in this particular area.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-06-12DOI: 10.3390/mi16060702
Jieun Hwang, Sungcheol Hong
{"title":"Passive Frequency Tunability in Moiré-Inspired Frequency Selective Surfaces Based on Full-Wave Simulation.","authors":"Jieun Hwang, Sungcheol Hong","doi":"10.3390/mi16060702","DOIUrl":"10.3390/mi16060702","url":null,"abstract":"<p><p>This paper presents a simulation-based investigation of passive frequency tunability in frequency-selective surfaces (FSSs) enabled by Moiré pattern interference. By overlapping two identical hexagonal FSS layers and introducing rotational misalignment between them, we demonstrate that the resulting Moiré patterns induce significant shifts in the resonance frequency without any external bias or active components. Using full-wave simulations in HFSS, we show that rotating the second layer from 0° to 30° can shift the resonant frequency from 4.4 GHz down to 1.2 GHz. This tunable behavior emerges solely from geometrical manipulation, offering a low-complexity alternative to active tuning methods that rely on varactors or micro-electromechanical systems (MEMSs). We discuss the theoretical basis for this tuning mechanism based on effective periodicity modulation via rotational interference and highlight potential applications in passive reconfigurable filters and refractive index sensors. The proposed approach provides a promising route for implementing tunable electromagnetic structures without compromising simplicity, power efficiency, or integration compatibility.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-06-11DOI: 10.3390/mi16060697
Ying He, Gang Xue, Haifeng Xiao, Haihong Zhu
{"title":"Investigating the Characteristics of the Laser Powder Bed Fusion of SiCp/AlSi10Mg Composites: From a Single Track to a Cubic Block.","authors":"Ying He, Gang Xue, Haifeng Xiao, Haihong Zhu","doi":"10.3390/mi16060697","DOIUrl":"10.3390/mi16060697","url":null,"abstract":"<p><p>Laser powder bed fusion (LPBF) of SiCp/AlSi10Mg is promising in many industrial fields. In this paper, the characteristics of a 15 wt.% 1200 mesh SiCp/AlSi10Mg metal matrix composite fabricated by LPBF were investigated systematically, i.e., from a single track to a block. It was found that when the laser energy input was high enough, the single track was continuous and not distorted; when the laser energy input was low, the single track was unstable and wrinkled. The densification of the LPBFed composite sample was influenced significantly by the surface morphologies and geometric dimensions of the single tracks. As high as 98.9% relative density was achieved when the optimized processing parameters were used. Because of the good wettability and the interfacial reaction during the process, the interface of SiC and the matrix showed good bonding. Near the interface of SiC and the matrix, needle-shaped phase Al<sub>4</sub>SiC<sub>4</sub> could be found both in the single track and block, and the faceted particle Si was formed in the block because of the interfacial reaction. The microhardness of the LPBFed SiCp/AlSi10Mg composites was much higher than that of the LPBFed unreinforced AlSi10Mg. A coefficient of friction of 0.178 and wear rate of 2.02 × 10<sup>-4</sup> mm<sup>3</sup>/(N⋅m) were achieved for the LPBFed composites. The main wear mechanism was delamination wear, accompanied by abrasive wear. The maximum yield strength and ultimate compressive strength were 566.6 MPa and 764.1 MPa, respectively. The fracture mode of the LPBFed composites is mainly brittle fracture. This study provides a theoretical and technical basis for LPBFed SiCp/AlSi10Mg 3D parts.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-06-11DOI: 10.3390/mi16060696
Tatsuhiko Aizawa, Hiroki Nakata, Takeshi Nasu
{"title":"Laser Micromachining for the Nucleation Control of Nickel Microtextures for IR Emission.","authors":"Tatsuhiko Aizawa, Hiroki Nakata, Takeshi Nasu","doi":"10.3390/mi16060696","DOIUrl":"10.3390/mi16060696","url":null,"abstract":"<p><p>Femtosecond laser micromachining was utilized to build up a micro-through-hole array into a sacrificial film, which was coated onto a copper specimen. This micro-through hole was shaped in the paraboloidal profile, with its micro-dimple on the interface between the copper substrate and the film. This profile was simply in correspondence with the laser energy profile. The array was used as a nucleation and growth site for nickel cluster deposition during wet plating. The micro-pillared unit cells nucleated at the micro-dimple and grew on the inside of the micro-through hole. After removing the sacrificial film, cleansing, and polishing, the nickel micro-pillar array was obtained, standing on the copper substrate. These unit cells and their alignments were measured through scanning electron microscopy and laser microscopy. Thermographic microscopy with FT-IR was utilized to measure the IR emittance as a function of wavelength. The focused areas were varied by controlling the aperture to analyze the effects of arrayed microtextures on the IR emittance.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-06-11DOI: 10.3390/mi16060699
Jialin Wang, Zhen Yang, Yi Fan, Yajuan Du
{"title":"Compaction-Aware Flash Memory Remapping for Key-Value Stores.","authors":"Jialin Wang, Zhen Yang, Yi Fan, Yajuan Du","doi":"10.3390/mi16060699","DOIUrl":"10.3390/mi16060699","url":null,"abstract":"<p><p>With the rapid development of big data and artificial intelligence, the demand for memory has exploded. As a key data structure in modern databases and distributed storage systems, the Log-Structured Merge Tree (LSM-tree) has been widely employed (such as LevelDB, RocksDB, etc.) in systems based on key-value pairs due to its efficient writing performance. In LSM-tree-based KV stores, typically deployed on systems with DRAM-SSD storage, the KV items are first organized into MemTable as buffer for SSTables in main memory. When the buffer size exceeds the threshold, MemTable is flushed to the SSD and reorganized into an SSTable, which is then passed down level by level through compaction. However, the compaction degrades write performance and SSD endurance due to significant write amplification. To address this issue, recent proposals have mostly focused on redesigning the structure of LSM trees. We discover the prevalence of unchanged data blocks (UDBs) in the LSM-tree compaction process, i.e., UDBs are written back to SSD the same as they are read into memory, which induces extra write amplification and degrades I/O performance. In this paper, we propose a KV store design in SSD, called RemapCom, to exploit remapping on these UDBs. RemapCom first identifies UDBs with a lightweight state machine integrated into the compaction merge process. In order to increase the ratio of UDBs, RemapCom further designs a UDB retention method to further develop the benefit of remapping. Moreover, we implement a prototype of RemapCom on LevelDB by providing two primitives for the remapping. Compared to the state of the art, the evaluation results demonstrate that RemapCom can reduce write amplification by up to 53% and improve write throughput by up to 30%.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195135/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-06-11DOI: 10.3390/mi16060698
Kimberly Trevizo, Luis Santana, Manuel Chairez, Amanda Carrillo, Rafael Gonzalez-Landaeta
{"title":"Energy Harvesting from Ankle Flexion During Gait Using Flexible CdS and PVDF Sensors.","authors":"Kimberly Trevizo, Luis Santana, Manuel Chairez, Amanda Carrillo, Rafael Gonzalez-Landaeta","doi":"10.3390/mi16060698","DOIUrl":"10.3390/mi16060698","url":null,"abstract":"<p><p>In this work, energy was harvested from ankle flexion during gait. For this, two piezoelectric thin films were tested: PVDF and CdS. The PVDF film was a commercial option, and the CdS film was fabricated in our laboratory. Deposition of the CdS film is also reported in this work. Energy harvested during gait from heel strike and ankle flexion was compared. Tests were performed with 10 healthy volunteers walking on a treadmill at 1.2-1.5 km/h. The volunteers wore a sock with piezoelectric films incorporated in the heel and ankle joint (talocrural joint). Tests were performed first with the PVDF film and then with the CdS film. The CdS thin film obtained a <i>d</i><sub>33</sub> coefficient of 1.4928 nm/V, indicating high electrical energy generated from strain-stress. The talocrural joint generated the most energy: 11.359 μJ for the PVDF film and 0.854 μJ for the CdS film. Although the CdS film generated less energy than the commercial option, it was shown that harvesting energy from ankle flexion increased the energy harvested by more than 700% during gait compared to the energy harvested from heel-to-ground impact.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-06-11DOI: 10.3390/mi16060695
Changhu Wang, Weiyun Meng
{"title":"Research on Simulation Optimization of MEMS Microfluidic Structures at the Microscale.","authors":"Changhu Wang, Weiyun Meng","doi":"10.3390/mi16060695","DOIUrl":"10.3390/mi16060695","url":null,"abstract":"<p><p>Microfluidic systems have become a hot topic in Micro-Electro-Mechanical System (MEMS) research, with micropumps serving as a key element due to their role in determining structural and flow dynamics within these systems. This study aims to analyze the influence of different structural obstacles within microfluidics on micropump efficiency and offer guidance for improving microfluidic system designs. In this context, a MEMS-based micropump valve structure was developed, and simulations were conducted to examine the effects of the valve on microfluidic oscillations. The research explored various configurations, including valve positions and quantities, yielding valuable insights for optimizing microfluidic transport mechanisms at the microscale.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}