MicromachinesPub Date : 2025-03-19DOI: 10.3390/mi16030344
Yuri D Ivanov, Ivan D Shumov, Andrey F Kozlov, Alexander N Ableev, Angelina V Vinogradova, Ekaterina D Nevedrova, Oleg N Afonin, Dmitry D Zhdanov, Vadim Y Tatur, Andrei A Lukyanitsa, Nina D Ivanova, Evgeniy S Yushkov, Dmitry V Enikeev, Vladimir A Konev, Vadim S Ziborov
{"title":"Incubation of Horseradish Peroxidase near 50 Hz AC Equipment Promotes Its Disaggregation and Enzymatic Activity.","authors":"Yuri D Ivanov, Ivan D Shumov, Andrey F Kozlov, Alexander N Ableev, Angelina V Vinogradova, Ekaterina D Nevedrova, Oleg N Afonin, Dmitry D Zhdanov, Vadim Y Tatur, Andrei A Lukyanitsa, Nina D Ivanova, Evgeniy S Yushkov, Dmitry V Enikeev, Vladimir A Konev, Vadim S Ziborov","doi":"10.3390/mi16030344","DOIUrl":"10.3390/mi16030344","url":null,"abstract":"<p><p>Low-frequency electromagnetic fields, induced by alternating current (AC)-based equipment such as transformers, are known to influence the physicochemical properties and function of enzymes, including their catalytic activity. Herein, we have investigated how incubation near a 50 Hz AC autotransformer influences the physicochemical properties of horseradish peroxidase (HRP), by atomic force microscopy (AFM) and spectrophotometry. We found that a half-hour-long incubation of the enzyme above the coil of a loaded autotransformer promoted the adsorption of the monomeric form of HRP on mica, enhancing the number of adsorbed enzyme particles by two orders of magnitude in comparison with the control sample. Most interestingly, the incubation of HRP above the switched-off transformer, which was unplugged from the mains power supply, for the same period of time was also found to cause a disaggregation of the enzyme. Notably, an increase in the activity of HRP against ABTS was observed in both cases. We hope that the interesting effects reported will emphasize the importance of consideration of the influence of low-frequency electromagnetic fields on enzymes in the design of laboratory and industrial equipment intended for operation with enzyme systems. The effects revealed in our study indicate the importance of proper shielding of AC-based transformers in order to avoid the undesirable influence of low-frequency electromagnetic fields induced by these transformers on humans.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143719723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-03-19DOI: 10.3390/mi16030348
Hexiang Guo, Junya Wang, Zheng You
{"title":"Scanning Mirror Benchmarking Platform Based on Two-Dimensional Position Sensitive Detector and Its Accuracy Analysis.","authors":"Hexiang Guo, Junya Wang, Zheng You","doi":"10.3390/mi16030348","DOIUrl":"10.3390/mi16030348","url":null,"abstract":"<p><p>A MEMS scanning mirror is a beam scanning device based on MEMS technology, which plays an important role in the fields of Lidar, medical imaging, laser projection display, and so on. The accurate measurement of the scanning mirror index can verify its performance and application scenarios. This paper designed and built a scanning mirror benchmark platform based on a two-dimensional position-sensitive detector (PSD), which can accurately measure the deflection angle, resonance frequency, and angular resolution of the scanning mirror, and described the specific test steps of the scanning mirror parameters, which can meet the two-dimensional measurement. Secondly, this paper analyzed and calculated the angular test uncertainty of the designed test system. After considering the actual optical alignment error and PSD measurement error, when the distance between the PSD and MEMS scanning mirror is 100 mm, the range of mechanical deflection angle that can be measured is (-6.34°, +6.34°). When the mechanical deflection angle of the scanning mirror is 0.01°, the accuracy measured by the test system is 0.00097°, and when the mechanical deflection of the scanning mirror is 6.34°, the accuracy measured by the test system is 0.011°. The test platform has high accuracy and can measure the parameters of the scanning mirror accurately.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143720401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-03-19DOI: 10.3390/mi16030350
Jung-Pin Lai, Shane Lin, Vito Lin, Andrew Kang, Yu-Po Wang, Ping-Feng Pai
{"title":"Predicting Thermal Resistance of Packaging Design by Machine Learning Models.","authors":"Jung-Pin Lai, Shane Lin, Vito Lin, Andrew Kang, Yu-Po Wang, Ping-Feng Pai","doi":"10.3390/mi16030350","DOIUrl":"10.3390/mi16030350","url":null,"abstract":"<p><p>Thermal analysis is an indispensable aspect of semiconductor packaging. Excessive operating temperatures in integrated circuit (IC) packages can degrade component performance and even cause failure. Therefore, thermal resistance and thermal characteristics are critical to the performance and reliability of electronic components. Machine learning modeling offers an effective way to predict the thermal performance of IC packages. In this study, data from finite element analysis (FEA) are utilized by machine learning models to predict thermal resistance during package testing. For two package types, namely the Quad Flat No-lead (QFN) and the Thin Fine-pitch Ball Grid Array (TFBGA), data derived from finite element analysis, are employed to predict thermal resistance. The thermal resistance values include θ<sub>JA</sub>, θ<sub>JB</sub>, θ<sub>JC</sub>, Ψ<sub>JT</sub>, and Ψ<sub>JB</sub>. Five machine learning models, namely the light gradient boosting machine (LGBM), random forest (RF), XGBoost (XGB), support vector regression (SVR), and multilayer perceptron regression (MLP), are applied as forecasting models in this study. Numerical results indicate that the XGBoost model outperforms the other models in terms of forecasting accuracy for almost all cases. Furthermore, the forecasting accuracy achieved by the XGBoost model is highly satisfactory. In conclusion, the XGBoost model shows significant promise as a reliable tool for predicting thermal resistance in packaging design. The application of machine learning techniques for forecasting these parameters could enhance the efficiency and reliability of IC packaging designs.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143720330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-03-17DOI: 10.3390/mi16030342
Ching-Feng Yu, Jr-Wei Peng, Chih-Cheng Hsiao, Chin-Hung Wang, Wei-Chung Lo
{"title":"Development of GUI-Driven AI Deep Learning Platform for Predicting Warpage Behavior of Fan-Out Wafer-Level Packaging.","authors":"Ching-Feng Yu, Jr-Wei Peng, Chih-Cheng Hsiao, Chin-Hung Wang, Wei-Chung Lo","doi":"10.3390/mi16030342","DOIUrl":"10.3390/mi16030342","url":null,"abstract":"<p><p>This study presents an artificial intelligence (AI) prediction platform driven by deep learning technologies, designed specifically to address the challenges associated with predicting warpage behavior in fan-out wafer-level packaging (FOWLP). Traditional electronic engineers often face difficulties in implementing AI-driven models due to the specialized programming and algorithmic expertise required. To overcome this, the platform incorporates a graphical user interface (GUI) that simplifies the design, training, and operation of deep learning models. It enables users to configure and run AI predictions without needing extensive coding knowledge, thereby enhancing accessibility for non-expert users. The platform efficiently processes large datasets, automating feature extraction, data cleansing, and model training, ensuring accurate and reliable predictions. The effectiveness of the AI platform is demonstrated through case studies involving FOWLP architectures, highlighting its ability to provide quick and precise warpage predictions. Additionally, the platform is available in both uniform resource locator (URL)-based and standalone versions, offering flexibility in usage. This innovation significantly improves design efficiency, enabling engineers to optimize electronic packaging designs, reduce errors, and enhance the overall system performance. The study concludes by showcasing the structure and functionality of the GUI platform, positioning it as a valuable tool for fostering further advancements in electronic packaging.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143720269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-03-17DOI: 10.3390/mi16030343
Milica Govedarica, Ivana Milosevic, Vesna Jankovic, Radmila Mitrovic, Ivana Kundacina, Ivan Nastasijevic, Vasa Radonic
{"title":"A Cost-Effective and Rapid Manufacturing Approach for Electrochemical Transducers with Magnetic Beads for Biosensing.","authors":"Milica Govedarica, Ivana Milosevic, Vesna Jankovic, Radmila Mitrovic, Ivana Kundacina, Ivan Nastasijevic, Vasa Radonic","doi":"10.3390/mi16030343","DOIUrl":"10.3390/mi16030343","url":null,"abstract":"<p><p>Biosensors as advanced analytical tools have found various applications in food safety, healthcare, and environmental monitoring in rapid and specific detection of target analytes in small liquid samples. Up to now, planar electrochemical electrodes have shown the highest potential for biosensor applications due to their simple and compact construction and cost-effectiveness. Although a number of commercially available electrodes, manufactured from various materials on different substrates, can be found on the market, their high costs for single use and low reproducibility persist as major drawbacks. In this study, we present an innovative, cost-effective approach for the rapid fabrication of electrodes that combines lamination of 24-karat gold leaves with low-cost polyvinyl chloride adhesive sheets followed by laser ablation. Laser ablation enables the creation of electrodes with customizable geometries and patterns with microlevel resolutions. The developed electrodes are characterized by cyclic voltammetry and electrochemical impedance spectroscopy, scanning electronic microscopy, and 3D profiling. To demonstrate the manufacturing and biosensing potential, different geometries and shapes of electrodes were realized as the electrochemical transducing platform and applied for the realization of magnetic bead (MB)-labeled biosensors for quantitative detection of food-borne pathogens of <i>Salmonella typhimurium</i> (<i>S. typhimurium</i>) and <i>Listeria monocytogenes</i> (<i>L. monocytogenes</i>).</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143720238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flow-Induced Shear Stress Combined with Microtopography Inhibits the Differentiation of Neuro-2a Cells.","authors":"Eleftheria Babaliari, Paraskevi Kavatzikidou, Dionysios Xydias, Sotiris Psilodimitrakopoulos, Anthi Ranella, Emmanuel Stratakis","doi":"10.3390/mi16030341","DOIUrl":"10.3390/mi16030341","url":null,"abstract":"<p><p>Considering that neurological injuries cannot typically self-recover, there is a need to develop new methods to study neuronal outgrowth in a controllable manner in vitro. In this study, a precise flow-controlled microfluidic system featuring custom-designed chambers that integrate laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves (MGs) was developed to investigate the combined effect of shear stress and topography on Neuro-2a (N2a) cells' behavior. The MGs were positioned parallel to the flow direction and the response of N2a cells was evaluated in terms of growth and differentiation. Our results demonstrate that flow-induced shear stress could inhibit the differentiation of N2a cells. This microfluidic system could potentially be used as a new model system to study the impact of shear stress on cell differentiation.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143720284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-03-16DOI: 10.3390/mi16030340
Sefa Aydin, Mesut Melek, Levent Gökrem
{"title":"A Safe and Efficient Brain-Computer Interface Using Moving Object Trajectories and LED-Controlled Activation.","authors":"Sefa Aydin, Mesut Melek, Levent Gökrem","doi":"10.3390/mi16030340","DOIUrl":"10.3390/mi16030340","url":null,"abstract":"<p><p>Nowadays, brain-computer interface (BCI) systems are frequently used to connect individuals who have lost their mobility with the outside world. These BCI systems enable individuals to control external devices using brain signals. However, these systems have certain disadvantages for users. This paper proposes a novel approach to minimize the disadvantages of visual stimuli on the eye health of system users in BCI systems employing visual evoked potential (VEP) and P300 methods. The approach employs moving objects with different trajectories instead of visual stimuli. It uses a light-emitting diode (LED) with a frequency of 7 Hz as a condition for the BCI system to be active. The LED is assigned to the system to prevent it from being triggered by any involuntary or independent eye movements of the user. Thus, the system user will be able to use a safe BCI system with a single visual stimulus that blinks on the side without needing to focus on any visual stimulus through moving balls. Data were recorded in two phases: when the LED was on and when the LED was off. The recorded data were processed using a Butterworth filter and the power spectral density (PSD) method. In the first classification phase, which was performed for the system to detect the LED in the background, the highest accuracy rate of 99.57% was achieved with the random forest (RF) classification algorithm. In the second classification phase, which involves classifying moving objects within the proposed approach, the highest accuracy rate of 97.89% and an information transfer rate (ITR) value of 36.75 (bits/min) were achieved using the RF classifier.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143719725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-03-14DOI: 10.3390/mi16030336
Hao Sun, Junzhong Shen, Changwu Zhang, Hengzhu Liu
{"title":"A Hybrid Scale-Up and Scale-Out Approach for Performance and Energy Efficiency Optimization in Systolic Array Accelerators.","authors":"Hao Sun, Junzhong Shen, Changwu Zhang, Hengzhu Liu","doi":"10.3390/mi16030336","DOIUrl":"10.3390/mi16030336","url":null,"abstract":"<p><p>The rapid development of deep neural networks (DNNs), such as convolutional neural networks and transformer-based large language models, has significantly advanced AI applications. However, these advances have introduced substantial computational and data demands, presenting challenges for the development of systolic array accelerators, which excel in tensor operations. Systolic array accelerators are typically developed using two approaches: scale-up, which increases the size of a single array, and scale-out, which involves multiple parallel arrays of fixed size. Scale-up achieves high performance in large-scale matrix multiplications, while scale-out offers better energy efficiency for lower-dimensional matrix multiplications. However, neither approach can simultaneously maintain both high performance and high energy efficiency across the full spectrum of DNN tasks. In this work, we propose a hybrid approach that integrates scale-up and scale-out techniques. We use mapping space exploration in a multi-tenant application environment to assign DNN operations to specific systolic array modules, thereby optimizing performance and energy efficiency. Experiments show that our proposed hybrid systolic array accelerator reduces energy consumption by up to 8% on average and improves throughput by up to 57% on average, compared to TPUv3 across various DNN models.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944597/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143720169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicromachinesPub Date : 2025-03-14DOI: 10.3390/mi16030337
H Y S Al-Zahrani, I M El Radaf, A Lahmar
{"title":"A Study on the Impact of Vanadium Doping on the Structural, Optical, and Optoelectrical Properties of ZnS Thin Films for Optoelectronic Applications.","authors":"H Y S Al-Zahrani, I M El Radaf, A Lahmar","doi":"10.3390/mi16030337","DOIUrl":"10.3390/mi16030337","url":null,"abstract":"<p><p>This study details the manufacture of vanadium-doped ZnS thin films via a cost-effective spray pyrolysis technique at varying concentrations of vanadium (4, 8, and 12 wt.%). The XRD data demonstrate the hexagonal structure of the vanadium-doped ZnS layers. The analysis of their structural properties indicates that the crystallite size (D) of the vanadium-doped ZnS films decreased as the vanadium concentration rose. The strain and dislocation density of the analyzed films were enhanced by increasing the vanadium content from 4 to 12 wt.%. The linear optical results of the vanadium-doped ZnS films revealed that the refractive index values were improved from 2.31 to 3.49 by increasing the vanadium concentration in the analyzed samples. Further, the rise in vanadium content enhanced the absorption coefficient. The energy gap (Eg) study indicates that the vanadium-doped ZnS films exhibited direct optical transitions, with the Eg values diminishing from 3.74 to 3.15 eV as the vanadium concentration increased. The optoelectrical analysis shows that the rise in vanadium concentration increases the dispersion energy from 9.48 to 12.76 eV and reduces the oscillator energy from 3.69 to 2.17 eV. The optical carrier concentration of these layers was improved from 1.49 × 1053 to 2.15 × 1053, while the plasma frequency was decreased from 4.34 × 1013 to 3.67 × 1013 by boosting the vanadium concentration from 4 to 12 wt.%. Simultaneously, the increase in vanadium content improves the nonlinear optical parameters of the vanadium-doped ZnS films. The hot probe method identifies these samples as n-type semiconductors. The findings suggest that these samples serve as an innovative window layer.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143719946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polarity-Dependent Driving Scheme for Suppressing Oil Film Splitting in Electrowetting Displays.","authors":"Jiashuai Wang, Xianyue Wu, Yibin Lin, Zichuan Yi, Mouhua Jiang, Yiting Rui, Liangyu Li, Li Wang, Xiuxiu Li, Liming Liu, Guofu Zhou","doi":"10.3390/mi16030338","DOIUrl":"10.3390/mi16030338","url":null,"abstract":"<p><p>Electrowetting displays (EWDs) face challenges such as oil film splitting and luminance fluctuations, hindering stable display performance. This study employed a high-precision three-dimensional simulation model to investigate and validate oil film splitting mechanisms. The model enabled detailed optimization of a new two-stage driving scheme, integrating a sinusoidal directing (SD) and a gradient asymmetrical alternating current (GAAC) driving scheme. The proposed scheme significantly suppressed oil film splitting, reduced luminance variance by 72.3% compared to traditional methods, and improved luminance stability by 41.6%. These findings highlight the potential of simulation-driven approaches to enhance EWD performance and expand applications of microfluidic technologies.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143720266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}