一种用于增强混合和纳米材料合成的新型双金刚石微反应器设计。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-09-18 DOI:10.3390/mi16091058
Qian Peng, Guangzu Wang, Chao Sheng, Haonan Wang, Yao Fu, Shenghong Huang
{"title":"一种用于增强混合和纳米材料合成的新型双金刚石微反应器设计。","authors":"Qian Peng, Guangzu Wang, Chao Sheng, Haonan Wang, Yao Fu, Shenghong Huang","doi":"10.3390/mi16091058","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces the Double-Diamond Reactor (DDR), a novel planar passive microreactor designed to overcome the following conventional limitations: inefficient mass transfer, high flow resistance, and clogging. The DDR integrates splitting-turning-impinging (STI) hydrodynamic principles via CFD-guided optimization, generating chaotic advection to enhance mixing. Experimental evaluations using Villermaux-Dushman tests showed a segregation index (Xs) as low as 0.027 at 100 mL·min<sup>-1</sup>, indicating near-perfect mixing. In BaSO<sub>4</sub> nanoparticle synthesis, the DDR achieved a 46% smaller average particle size (95 nm) and narrower distribution (σg=1.27) compared to reference designs (AFR-1), while maintaining low pressure drops (<20 kPa at 60 mL·min<sup>-1</sup>). The DDR's superior performance stems from its hierarchical flow division and concave-induced vortices, which eliminate stagnant zones. This work demonstrates the DDR's potential for high-throughput nanomaterial synthesis with precise control over particle characteristics, offering a scalable and energy-efficient solution for advanced chemical processes.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471506/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Double-Diamond Microreactor Design for Enhanced Mixing and Nanomaterial Synthesis.\",\"authors\":\"Qian Peng, Guangzu Wang, Chao Sheng, Haonan Wang, Yao Fu, Shenghong Huang\",\"doi\":\"10.3390/mi16091058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces the Double-Diamond Reactor (DDR), a novel planar passive microreactor designed to overcome the following conventional limitations: inefficient mass transfer, high flow resistance, and clogging. The DDR integrates splitting-turning-impinging (STI) hydrodynamic principles via CFD-guided optimization, generating chaotic advection to enhance mixing. Experimental evaluations using Villermaux-Dushman tests showed a segregation index (Xs) as low as 0.027 at 100 mL·min<sup>-1</sup>, indicating near-perfect mixing. In BaSO<sub>4</sub> nanoparticle synthesis, the DDR achieved a 46% smaller average particle size (95 nm) and narrower distribution (σg=1.27) compared to reference designs (AFR-1), while maintaining low pressure drops (<20 kPa at 60 mL·min<sup>-1</sup>). The DDR's superior performance stems from its hierarchical flow division and concave-induced vortices, which eliminate stagnant zones. This work demonstrates the DDR's potential for high-throughput nanomaterial synthesis with precise control over particle characteristics, offering a scalable and energy-efficient solution for advanced chemical processes.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16091058\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091058","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了双金刚石反应器(DDR),这是一种新型的平面无源微反应器,旨在克服以下传统的局限性:传质效率低,流动阻力大,堵塞。DDR通过cfd导向优化集成了劈裂-转弯-碰撞(STI)流体力学原理,产生混沌平流以增强混合。Villermaux-Dushman实验评价表明,在100 mL·min-1时,分离指数(Xs)低至0.027,表明混合接近完美。在BaSO4纳米颗粒合成中,DDR的平均粒径(95 nm)和分布(σg=1.27)均比参考设计(AFR-1)小46%,同时保持了较低的压降(-1)。DDR的优越性能源于它的分层流动划分和凹形涡,消除了停滞区。这项工作证明了DDR在高通量纳米材料合成方面的潜力,可以精确控制颗粒特性,为先进的化学过程提供可扩展和节能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Double-Diamond Microreactor Design for Enhanced Mixing and Nanomaterial Synthesis.

This study introduces the Double-Diamond Reactor (DDR), a novel planar passive microreactor designed to overcome the following conventional limitations: inefficient mass transfer, high flow resistance, and clogging. The DDR integrates splitting-turning-impinging (STI) hydrodynamic principles via CFD-guided optimization, generating chaotic advection to enhance mixing. Experimental evaluations using Villermaux-Dushman tests showed a segregation index (Xs) as low as 0.027 at 100 mL·min-1, indicating near-perfect mixing. In BaSO4 nanoparticle synthesis, the DDR achieved a 46% smaller average particle size (95 nm) and narrower distribution (σg=1.27) compared to reference designs (AFR-1), while maintaining low pressure drops (<20 kPa at 60 mL·min-1). The DDR's superior performance stems from its hierarchical flow division and concave-induced vortices, which eliminate stagnant zones. This work demonstrates the DDR's potential for high-throughput nanomaterial synthesis with precise control over particle characteristics, offering a scalable and energy-efficient solution for advanced chemical processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信