Micromachines最新文献

筛选
英文 中文
Research on Optimization of Height Difference of a Precision Horizontal Machining Center. 精密卧式加工中心高度差优化研究。
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-21 DOI: 10.3390/mi15101279
Lin Han, Zhenyun Zhang, Xueguang Tian, Houjun Qi, Fucong Liu, Yang Qi
{"title":"Research on Optimization of Height Difference of a Precision Horizontal Machining Center.","authors":"Lin Han, Zhenyun Zhang, Xueguang Tian, Houjun Qi, Fucong Liu, Yang Qi","doi":"10.3390/mi15101279","DOIUrl":"https://doi.org/10.3390/mi15101279","url":null,"abstract":"<p><p>This work proposes a methodology to determine the height difference of the guideways of machine tools where two guideways are not placed on the same horizontal plane. Firstly, a rigid-flexible coupling system consisting of a moving rigid mass and an elastic overhanging beam is presented as an equivalent mechanical model of a column and a spindle box. Then, the relationship between the deviation of a reference point and the height difference or the spindle box's stroke is modeled. Next, the natural frequency and mode shape function of the overhanging beam, and the frequency response functions of the coupling system, are derived. The results indicate that there always exists an optimal height difference minimizing the relative deflection over the stroke of the moving part, and the optimal value depends on the loads in two directions and the stroke of the moving part. Similarly, there is also an optimal choice maximizing the first-order resonant frequency of the coupling system; however, the optimal solutions for both static and dynamic cases are not the same. This work provides beneficial instruction for choosing the height difference of machine tools with two guideways on a bed that are not on the same plane.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of Metrology in Grinding and Polishing Processes for Rotationally Symmetrical Aspherical Surfaces with Optimized Material Removal Functions. 将计量学融入研磨和抛光工艺,以优化材料去除功能的旋转对称非球面表面。
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-21 DOI: 10.3390/mi15101276
Ravi Pratap Singh, Yaolong Chen
{"title":"Integration of Metrology in Grinding and Polishing Processes for Rotationally Symmetrical Aspherical Surfaces with Optimized Material Removal Functions.","authors":"Ravi Pratap Singh, Yaolong Chen","doi":"10.3390/mi15101276","DOIUrl":"https://doi.org/10.3390/mi15101276","url":null,"abstract":"<p><p>Aspherical surfaces, with their varying curvature, minimize aberrations and enhance clarity, making them essential in optics, aerospace, medical devices, and telecommunications. However, manufacturing these surfaces is challenging because of systematic errors in CNC equipment, tool wear, measurement inaccuracies, and environmental disturbances. These issues necessitate precise error compensation to achieve the desired surface shape. Traditional methods for spherical optics are inadequate for aspherical components, making accurate surface shape error detection and compensation crucial. This study integrates advanced metrology with optimized material removal functions in the grinding and polishing processes. By combining numerical control technology, computer technology, and data analysis, we developed CAM software (version 1) tailored for aspherical surfaces. This software uses a compensation correction algorithm to process error data and generate NC programs for machining. Our approach automates and digitizes the grinding and polishing process, improving efficiency and surface accuracy. This advancement enables high-precision mass production of rotationally symmetrical aspherical optical components, addressing existing manufacturing challenges and enhancing optical system performance.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sub-1 ppm/°C Reference Voltage Source with a Wide Input Range. 宽输入范围、低于 1 ppm/°C 的基准电压源。
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-21 DOI: 10.3390/mi15101273
Yuchi Xiao, Chunlai Wang, Hongyang Hou, Weihua Han
{"title":"A Sub-1 ppm/°C Reference Voltage Source with a Wide Input Range.","authors":"Yuchi Xiao, Chunlai Wang, Hongyang Hou, Weihua Han","doi":"10.3390/mi15101273","DOIUrl":"https://doi.org/10.3390/mi15101273","url":null,"abstract":"<p><p>With the continuous advancement of electronic technology, the application of high-voltage integrated circuits is becoming increasingly prevalent in fields such as power systems, medical devices, and industrial automation. The reference circuit within high-voltage integrated circuits must not only exhibit insensitivity to temperature variations but also maintain stability across a broad voltage supply. This paper presents a bandgap reference (BGR) source capable of operating over a wide input range. This BGR employs a high-order curvature compensation method to eliminate nonlinear voltage terms, resulting in minimal temperature drift. The circuit achieves an impressive temperature coefficient (TC) of 0.88 ppm/°C over a temperature range from -40 °C to 130 °C. To ensure stable operation within a 4-40 V range, the design incorporates a pre-regulation circuit that stabilizes the supply voltage of the BGR core at a fixed value, thereby enhancing the ability to withstand variations in power supply voltage.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain-Induced Frequency Splitting in PT Symmetric Coupled Silicon Resonators. PT 对称耦合硅谐振器中由应变引起的频率分裂
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-21 DOI: 10.3390/mi15101278
Lifeng Wang, Shangyang Zhang, Qunce Yuan
{"title":"Strain-Induced Frequency Splitting in PT Symmetric Coupled Silicon Resonators.","authors":"Lifeng Wang, Shangyang Zhang, Qunce Yuan","doi":"10.3390/mi15101278","DOIUrl":"https://doi.org/10.3390/mi15101278","url":null,"abstract":"<p><p>When two resonators of coupled silicon resonators are identical and the gain on one side is equal to the loss on the other side, a parity-time (PT) symmetric-coupled silicon resonator is formed. As non-Hermitian systems, the PT-symmetric systems have exhibited many special properties and interesting phenomena. This paper proposes the strain-induced frequency splitting in PT symmetry-coupled silicon resonators. The frequency splitting of the PT system caused by strain perturbations is derived and simulated. Theory and simulation both indicate that the PT system is more sensitive to strain perturbation near the exceptional point (EP) point. Then, a feedback circuit is designed to achieve the negative damping required for PT symmetry. Based on a simple silicon-on-insulator (SOI) process, the silicon resonator chip is successfully fabricated. After that, the PT-symmetric-coupled silicon resonators are successfully constructed, and the frequency splitting phenomenon caused by strain is observed experimentally.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison. 全面回顾微通道和纳米通道制造的新兴技术:限制、应用和比较。
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-21 DOI: 10.3390/mi15101274
Koosha Karimi, Ali Fardoost, Nikhil Mhatre, Jay Rajan, David Boisvert, Mehdi Javanmard
{"title":"A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison.","authors":"Koosha Karimi, Ali Fardoost, Nikhil Mhatre, Jay Rajan, David Boisvert, Mehdi Javanmard","doi":"10.3390/mi15101274","DOIUrl":"https://doi.org/10.3390/mi15101274","url":null,"abstract":"<p><p>In recent years, the field of micro- and nanochannel fabrication has seen significant advancements driven by the need for precision in biomedical, environmental, and industrial applications. This review provides a comprehensive analysis of emerging fabrication technologies, including photolithography, soft lithography, 3D printing, electron-beam lithography (EBL), wet/dry etching, injection molding, focused ion beam (FIB) milling, laser micromachining, and micro-milling. Each of these methods offers unique advantages in terms of scalability, precision, and cost-effectiveness, enabling the creation of highly customized micro- and nanochannel structures. Challenges related to scalability, resolution, and the high cost of traditional techniques are addressed through innovations such as deep reactive ion etching (DRIE) and multipass micro-milling. This paper also explores the application potential of these technologies in areas such as lab-on-a-chip devices, biomedical diagnostics, and energy-efficient cooling systems. With continued research and technological refinement, these methods are poised to significantly impact the future of microfluidic and nanofluidic systems.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on the Machinability of Polycrystalline ZnS by Micro-Laser-Assisted Diamond Cutting. 微激光辅助金刚石切削对多晶 ZnS 加工性的研究
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-21 DOI: 10.3390/mi15101275
Haoqi Luo, Xue Wang, Lin Qin, Hongxin Zhao, Deqing Zhu, Shanyi Ma, Jianguo Zhang, Junfeng Xiao
{"title":"Investigation on the Machinability of Polycrystalline ZnS by Micro-Laser-Assisted Diamond Cutting.","authors":"Haoqi Luo, Xue Wang, Lin Qin, Hongxin Zhao, Deqing Zhu, Shanyi Ma, Jianguo Zhang, Junfeng Xiao","doi":"10.3390/mi15101275","DOIUrl":"https://doi.org/10.3390/mi15101275","url":null,"abstract":"<p><p>Polycrystalline ZnS is a typical infrared optical material. It is widely used in advanced optical systems due to its excellent optical properties. The machining accuracy of polycrystalline ZnS optical elements must satisfy the requirements of high-performance system development. However, the soft and brittle nature of the material poses a challenge for high-quality and efficient machining. In recent years, in situ laser-assisted diamond cutting has been proven to be an effective method for ultra-precision cutting of brittle materials. In this study, the mechanism of in situ laser-assisted cutting on ultra-precision cutting machinability enhancement of ZnS was investigated. Firstly, the physical properties of ZnS were characterized by high-temperature nanoindentation experiments. The result revealed an increase in ductile machinability of ZnS due to plastic deformation and a decrease in microhardness and Young's modulus at high temperatures. It provided a fundamental theory for the ductile-brittle transition of ZnS. Subsequently, a series of diamond-cutting experiments were carried out to study the removal mechanism of ZnS during in situ laser-assisted cutting. It was found that the mass damage initiation depth groove generated by in situ laser-assisted cutting increased by 57.99% compared to the groove generated by ordinary cutting. It was found that micron-sized pits were suppressed under in situ laser-assisted cutting. The main damage form of HIP-ZnS was changed from flake spalling and pits to radial cleavage cracks. Additionally, the laser can suppress the removal mode difference of different grain crystallographic and ensure the ductile region processing. Finally, planning cutting experiments were carried out to verify that a smooth and uniform surface with Sa of 3.607 nm was achieved at a laser power of 20 W, which was 73.58% better than normal cutting. The main components of roughness were grain boundary steps and submicron pit. This study provides a promising method for ultra-precision cutting of ZnS.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Control of FSBB Converter with Aquila Optimizer-Based PID Controller. 利用基于 Aquila 优化器的 PID 控制器实现 FSBB 转换器的优化控制
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-21 DOI: 10.3390/mi15101277
Luoyao Ren, Dazhi Wang, Yupeng Zhang
{"title":"Optimal Control of FSBB Converter with Aquila Optimizer-Based PID Controller.","authors":"Luoyao Ren, Dazhi Wang, Yupeng Zhang","doi":"10.3390/mi15101277","DOIUrl":"https://doi.org/10.3390/mi15101277","url":null,"abstract":"<p><p>This paper presents a new methodology for determining the optimal coefficients of a PID controller for a four-switch buck-boost (FSBB) converter. The main objective of this research is to improve the performance of FSBB converters by fine-tuning the parameters of the PID controller using the newly developed Aquila Optimizer (AO). PID controllers are widely recognized for their simple yet effective control in FSBB converters. However, to further improve the efficiency and reliability of the control system, the PID control parameters must be optimized. In this context, the application of the AO algorithm proves to be a significant advance. By optimizing the PID coefficients, the dynamic responsiveness of the system can be improved, thus reducing the response time. In addition, the robustness of the control system is enhanced, which is essential to ensure stable and reliable operation under varying conditions. The use of AOs plays a key role in maintaining system stability and ensuring the proper operation of the control system even under challenging conditions. In order to demonstrate the effectiveness and potential of the proposed method, the performance of the AO-optimized PID controller was compared with that of PID controllers tuned by other optimization algorithms in the same test environment. The results show that the AO outperforms the other optimization algorithms in terms of dynamic response and robustness, thus validating the efficiency and correctness of the proposed method. This work highlights the advantages of using the Aquila Optimizer in the PID tuning of FSBB converters, providing a promising solution for improving system performance.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Miniaturized Pathogen Detection System Using Magnetic Nanoparticles and Microfluidics Technology. 利用磁性纳米粒子和微流体技术的微型病原体检测系统
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-20 DOI: 10.3390/mi15101272
Benjamin Garlan, Amine Rabehi, Kieu Ngo, Sophie Neveu, Reza Askari Moghadam, Hamid Kokabi
{"title":"Miniaturized Pathogen Detection System Using Magnetic Nanoparticles and Microfluidics Technology.","authors":"Benjamin Garlan, Amine Rabehi, Kieu Ngo, Sophie Neveu, Reza Askari Moghadam, Hamid Kokabi","doi":"10.3390/mi15101272","DOIUrl":"https://doi.org/10.3390/mi15101272","url":null,"abstract":"<p><p>Rapid detection of a biological agent is essential to anticipate a threat to the protection of biodiversity and ecosystems. Our goal is to miniaturize a magnetic pathogen detection system in order to fabricate an efficient and portable system. The detection device is based on flat, multilayer coils associated with microfluidic structures to detect magnetic nanoparticles linked to pathogen agents. One type of immunological diagnosis is based on the measurement of the magnetic sensitivity of magnetic nanoparticles (MNPs), which are markers connected to pathogens. This method of analysis involves the coupling of antibodies or antigen proteins with MNPs. Among the available magnetic techniques, the frequency mixing method has a definite advantage by making it possible to quantify MNPs. An external magnetic field composed of a low- and a high-frequency field is applied to the sample reservoir. Then, the response signal is measured and analyzed. In this paper, magnetic microcoils are implemented on a multilayer Printed Circuit Board (PCB), and a microfluidics microstructure is designed in connection with the planar coils. Simulation software, COMSOL version 5.3, provides an analytical perspective to choose the number of turns in magnetic coils and to understand the effects of changing the shape and dimensions of the microfluidics microstructure.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature Compensation Method for Tunnel Magnetoresistance Micro-Magnetic Sensors Through Reference Magnetic Field. 通过参考磁场对隧道磁阻微磁传感器进行温度补偿的方法。
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-20 DOI: 10.3390/mi15101271
Tao Kuai, Qingfa Du, Jiafei Hu, Shilong Shi, Peisen Li, Dixiang Chen, Mengchun Pan
{"title":"Temperature Compensation Method for Tunnel Magnetoresistance Micro-Magnetic Sensors Through Reference Magnetic Field.","authors":"Tao Kuai, Qingfa Du, Jiafei Hu, Shilong Shi, Peisen Li, Dixiang Chen, Mengchun Pan","doi":"10.3390/mi15101271","DOIUrl":"https://doi.org/10.3390/mi15101271","url":null,"abstract":"<p><p>The sensitivity of Tunnel Magnetoresistance (TMR) sensors is characterized by significant temperature drift and poor sensitivity drift repeatability, which severely impairs measurement accuracy. Conventional temperature compensation techniques are often hindered by low compensation precision, inadequate real-time performance, and an inability to effectively address the issue of poor repeatability in temperature drift characteristics. To overcome these challenges, this paper introduces a novel method for suppressing temperature drift in TMR sensors. In this method, an alternating reference magnetic field is applied to TMR sensors, and the output amplitude at the frequency of the reference magnetic field is calculated to compensate the sensitivity temperature drift in real time. Temperature characteristic tests were conducted in a non-magnetic temperature test chamber, and the results revealed that the proposed method significantly reduced the TMR sensitivity drift coefficient from 985.39 ppm/°C to 59.08 ppm/°C. Additionally, the repeatability of sensitivity temperature characteristic curves was enhanced, with a reduction in root mean square error from 0.84 to 0.21. This approach effectively mitigates temperature-induced sensitivity drift without necessitating the use of a temperature sensor, and has the advantages of real-time performance and repeatability, providing a new approach for the high-precision temperature drift suppression of TMR.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport in a Two-Channel Nanotransistor Device with Lateral Resonant Tunneling. 具有侧向谐振隧道效应的双通道纳米晶体管器件中的传输
IF 3 3区 工程技术
Micromachines Pub Date : 2024-10-19 DOI: 10.3390/mi15101270
Ulrich Wulf, Amanda Teodora Preda, George Alexandru Nemnes
{"title":"Transport in a Two-Channel Nanotransistor Device with Lateral Resonant Tunneling.","authors":"Ulrich Wulf, Amanda Teodora Preda, George Alexandru Nemnes","doi":"10.3390/mi15101270","DOIUrl":"https://doi.org/10.3390/mi15101270","url":null,"abstract":"<p><p>We study field effect nanotransistor devices in the Si/SiO<sub>2</sub> material system which are based on lateral resonant tunneling between two parallel conduction channels. After introducing a simple piecewise linear potential model, we calculate the quantum transport properties in the R-matrix approach. In the transfer characteristics, we find a narrow resonant tunneling peak around zero control voltage. Such a narrow resonant tunneling peak allows one to switch the drain current with small control voltages, thus opening the way to low-energy applications. In contrast to similar double electron layer tunneling transistors that have been studied previously in III-V material systems with much larger channel lengths, the resonant tunneling peak in the drain current is found to persist at room temperature. We employ the R-matrix method in an effective approximation for planar systems and compare the analytical results with full numerical calculations. This provides a basic understanding of the inner processes pertaining to lateral tunneling transport.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信