{"title":"小型化的双端口和四端口MIMO天线变体,具有提高UWB和5g中频应用的分集性能。","authors":"Karthikeyan Ramanathan, Srivatsun Gopalakrishnan, Thrisha Chandrakanthan","doi":"10.3390/mi16060716","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for high-speed and high-capacity wireless communication has intensified the need for compact, wideband, and efficient MIMO antenna systems, particularly for 5G mid-band and UWB applications. This article presents a miniaturized dual and quad port MIMO antenna design optimized for 5G mid-band (n77/n78/n79/n96/n102) and Ultra-Wideband (UWB) applications without employing any decoupling structures between the radiating elements. The 2-port configuration features two closely spaced symmetric monopole elements (spacing < λ<sub>max</sub>/2), promoting efficient use of space without degrading performance. An FR4 substrate (εr = 4.4) is used for fabrication with a compact size of 30 × 41 × 1.6 mm<sup>3</sup>. This layout is extended orthogonally and symmetrically to form a compact quad-port variant with dimensions of 60 × 41 × 1.6 mm<sup>3</sup>. Both designs offer a broad operational bandwidth from 2.6 GHz to 10.8 GHz (8.2 GHz), retaining return loss (S<sub>XX</sub>) below -10 dB and strong isolation (S<sub>XY</sub> < -20 dB at high frequencies, <-15 dB at low frequencies). The proposed MIMO antennas demonstrate strong performance and excellent diversity characteristics. The two-port antenna achieves an average envelope correlation coefficient (ECC) of 0.00204, diversity gain (DG) of 9.98 dB, and a mean effective gain difference (MEG<sub>ij</sub>) of 0.3 dB, with a total active reflection coefficient (TARC) below -10 dB and signal delay variation under 0.25 ns, ensuring minimal pulse distortion. Similarly, the four-port design reports an average ECC of 0.01432, DG of 9.65 dB, MEG<sub>ij</sub> difference below 0.3 dB, and TARC below -10 dB, confirming robust diversity and MIMO performance across both configurations.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194843/pdf/","citationCount":"0","resultStr":"{\"title\":\"Miniaturized Dual and Quad Port MIMO Antenna Variants Featuring Elevated Diversity Performance for UWB and 5G-Midband Applications.\",\"authors\":\"Karthikeyan Ramanathan, Srivatsun Gopalakrishnan, Thrisha Chandrakanthan\",\"doi\":\"10.3390/mi16060716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing demand for high-speed and high-capacity wireless communication has intensified the need for compact, wideband, and efficient MIMO antenna systems, particularly for 5G mid-band and UWB applications. This article presents a miniaturized dual and quad port MIMO antenna design optimized for 5G mid-band (n77/n78/n79/n96/n102) and Ultra-Wideband (UWB) applications without employing any decoupling structures between the radiating elements. The 2-port configuration features two closely spaced symmetric monopole elements (spacing < λ<sub>max</sub>/2), promoting efficient use of space without degrading performance. An FR4 substrate (εr = 4.4) is used for fabrication with a compact size of 30 × 41 × 1.6 mm<sup>3</sup>. This layout is extended orthogonally and symmetrically to form a compact quad-port variant with dimensions of 60 × 41 × 1.6 mm<sup>3</sup>. Both designs offer a broad operational bandwidth from 2.6 GHz to 10.8 GHz (8.2 GHz), retaining return loss (S<sub>XX</sub>) below -10 dB and strong isolation (S<sub>XY</sub> < -20 dB at high frequencies, <-15 dB at low frequencies). The proposed MIMO antennas demonstrate strong performance and excellent diversity characteristics. The two-port antenna achieves an average envelope correlation coefficient (ECC) of 0.00204, diversity gain (DG) of 9.98 dB, and a mean effective gain difference (MEG<sub>ij</sub>) of 0.3 dB, with a total active reflection coefficient (TARC) below -10 dB and signal delay variation under 0.25 ns, ensuring minimal pulse distortion. Similarly, the four-port design reports an average ECC of 0.01432, DG of 9.65 dB, MEG<sub>ij</sub> difference below 0.3 dB, and TARC below -10 dB, confirming robust diversity and MIMO performance across both configurations.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194843/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16060716\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060716","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Miniaturized Dual and Quad Port MIMO Antenna Variants Featuring Elevated Diversity Performance for UWB and 5G-Midband Applications.
The growing demand for high-speed and high-capacity wireless communication has intensified the need for compact, wideband, and efficient MIMO antenna systems, particularly for 5G mid-band and UWB applications. This article presents a miniaturized dual and quad port MIMO antenna design optimized for 5G mid-band (n77/n78/n79/n96/n102) and Ultra-Wideband (UWB) applications without employing any decoupling structures between the radiating elements. The 2-port configuration features two closely spaced symmetric monopole elements (spacing < λmax/2), promoting efficient use of space without degrading performance. An FR4 substrate (εr = 4.4) is used for fabrication with a compact size of 30 × 41 × 1.6 mm3. This layout is extended orthogonally and symmetrically to form a compact quad-port variant with dimensions of 60 × 41 × 1.6 mm3. Both designs offer a broad operational bandwidth from 2.6 GHz to 10.8 GHz (8.2 GHz), retaining return loss (SXX) below -10 dB and strong isolation (SXY < -20 dB at high frequencies, <-15 dB at low frequencies). The proposed MIMO antennas demonstrate strong performance and excellent diversity characteristics. The two-port antenna achieves an average envelope correlation coefficient (ECC) of 0.00204, diversity gain (DG) of 9.98 dB, and a mean effective gain difference (MEGij) of 0.3 dB, with a total active reflection coefficient (TARC) below -10 dB and signal delay variation under 0.25 ns, ensuring minimal pulse distortion. Similarly, the four-port design reports an average ECC of 0.01432, DG of 9.65 dB, MEGij difference below 0.3 dB, and TARC below -10 dB, confirming robust diversity and MIMO performance across both configurations.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.