Jieun Lee, Yeonwoo Ju, Junho Lim, Sungmin Hong, Soo-Whang Baek, Jonghwan Lee
{"title":"Enhancing Confidence and Interpretability of a CNN-Based Wafer Defect Classification Model Using Temperature Scaling and LIME.","authors":"Jieun Lee, Yeonwoo Ju, Junho Lim, Sungmin Hong, Soo-Whang Baek, Jonghwan Lee","doi":"10.3390/mi16091057","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate classification of defects in the semiconductor manufacturing process is critical for improving yield and ensuring quality. While previous works have mainly focused on improving classification accuracy, we propose a model that can simultaneously assess accuracy, prediction confidence, and interpretability in wafer defect classification. To solve the class imbalance problem, we used a weighted cross-entropy loss function and convolutional neural network-based model to achieve a high accuracy of 97.8% on the test dataset and applied a temperature-scaling technique to enhance confidence. Furthermore, by simultaneously employing local interpretable model-agnostic explanations and gradient-weighted class activation mapping, the rationale for the predictions of the model was visualized, allowing users to understand the decision-making process of the model from various perspectives. This research can provide a direction for the next generation of intelligent quality management systems by enhancing the applicability of the proposed model in actual semiconductor production sites through explainable predictions.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091057","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate classification of defects in the semiconductor manufacturing process is critical for improving yield and ensuring quality. While previous works have mainly focused on improving classification accuracy, we propose a model that can simultaneously assess accuracy, prediction confidence, and interpretability in wafer defect classification. To solve the class imbalance problem, we used a weighted cross-entropy loss function and convolutional neural network-based model to achieve a high accuracy of 97.8% on the test dataset and applied a temperature-scaling technique to enhance confidence. Furthermore, by simultaneously employing local interpretable model-agnostic explanations and gradient-weighted class activation mapping, the rationale for the predictions of the model was visualized, allowing users to understand the decision-making process of the model from various perspectives. This research can provide a direction for the next generation of intelligent quality management systems by enhancing the applicability of the proposed model in actual semiconductor production sites through explainable predictions.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.