{"title":"A 90-100 GHz SiGe BiCMOS 6-Bit Digital Phase Shifter with a Coupler-Based 180° Unit for Phased Arrays.","authors":"Hongchang Shen, Hongyun Zhang, Yuqian Pu, Chong Wang, Bing Li, Xusheng Tang, Xinxi Zeng, Jiang Luo","doi":"10.3390/mi16091056","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a 90-100 GHz wideband digital phase shifter with a fine resolution of 5.625°, implemented in a 0.13 μm SiGe BiCMOS process. A switch-type architecture with six cascaded units, including a novel 180° cell based on a broadband coupler, enables full 0-360° phase coverage while improving phase accuracy, bandwidth, and process robustness. Post-layout simulations demonstrate an insertion loss below 15.5 dB, an RMS phase error under 2.3°, and an RMS amplitude error better than 0.9 dB across the 90-100 GHz band. The total chip area, including test pads, is 0.39 mm<sup>2</sup>, making the design compact and well suited for high-density phased-array applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091056","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a 90-100 GHz wideband digital phase shifter with a fine resolution of 5.625°, implemented in a 0.13 μm SiGe BiCMOS process. A switch-type architecture with six cascaded units, including a novel 180° cell based on a broadband coupler, enables full 0-360° phase coverage while improving phase accuracy, bandwidth, and process robustness. Post-layout simulations demonstrate an insertion loss below 15.5 dB, an RMS phase error under 2.3°, and an RMS amplitude error better than 0.9 dB across the 90-100 GHz band. The total chip area, including test pads, is 0.39 mm2, making the design compact and well suited for high-density phased-array applications.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.