{"title":"Multi-color two-laser super-resolution structured illumination microscopy for the visualization of multi-organelle in living cells","authors":"Xuejuan Hu, Yadan Tan, Yujie Huang, Jianze Ye, Yifei Liang, Xiaokun Yang, Hengliang Wang, Zihao Cheng, Lihu Wang, Shiqian Liu, Minfei Li, Zhengdi He, Qianding Gao, Jingli Zhong","doi":"10.1002/jbio.202400154","DOIUrl":"10.1002/jbio.202400154","url":null,"abstract":"<p>In this study, we introduced a novel dual-laser multi-color imaging system. Integrated with a multi-channel filter wheel, this system compared three spectral decontamination algorithms (nonnegative matrix factorization [NMF], RCAN, and PICASSO) showcasing its efficacy in achieving four-color imaging with only two laser sources. Combined with a reliable image reconstruction algorithm, the spatial resolution of four channels super-resolution four-color images reached 130, 125, 133, and 132 nm, respectively. Lipid droplets, mitochondria, lysosomes, and nuclei from the mouse hepatocytes (AML12), human neuroblastoma cells (SH-SY5Y), mouse hippocampal neuronal cells (HT-22), and immortalized murine bone marrow-derived macrophages were imaged. At the same time, the chromatin condensation, nuclear contraction, DNA fragmentation, apoptotic body formation, as well as the fusion of Mito and Lyso involved in mitochondrial autophagy were observed in HT-22 and SH-SY5Y cells suffering oxidative stress. Our multi-color SIM imaging system establishes a powerful platform for dynamic organelle studies and other high-resolution investigations in live cells.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 10","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intelligent skin-removal photoacoustic computed tomography for human based on deep learning","authors":"Ning Wang, Tao Chen, Chengbo Liu, Jing Meng","doi":"10.1002/jbio.202400197","DOIUrl":"10.1002/jbio.202400197","url":null,"abstract":"<p>Photoacoustic computed tomography (PACT) has centimeter-level imaging ability and can be used to detect the human body. However, strong photoacoustic signals from skin cover deep tissue information, hindering the frontal display and analysis of photoacoustic images of deep regions of interest. Therefore, we propose a 2.5 D deep learning model based on feature pyramid structure and single-type skin annotation to extract the skin region, and design a mask generation algorithm to remove skin automatically. PACT imaging experiments on the human periphery blood vessel verified the correctness our proposed skin-removal method. Compared with previous studies, our method exhibits high robustness to the uneven illumination, irregular skin boundary, and reconstruction artifacts in the images, and the reconstruction errors of PACT images decreased by 20% ~ 90% with a 1.65 dB improvement in the signal-to-noise ratio at the same time. This study may provide a promising way for high-definition PACT imaging of deep tissues.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 10","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Angiogenesis-elicited spectral responses of early invasive skin melanoma: Implications for the evaluation of lesion progression","authors":"Gladimir V. G. Baranoski, Petri M. Varsa","doi":"10.1002/jbio.202400208","DOIUrl":"10.1002/jbio.202400208","url":null,"abstract":"<p>Early invasive skin melanoma (EISM) associated with partial tumor invasion to the thin and optically complex papillary dermis (PD) represents a critical stage before the onset of metastasis. EISM lesions may be accompanied by angiogenesis, which can alter the PD's blood and fibril contents. A comprehensive understanding about these interconnected processes is essential for enhancing the efficacy of EISM optical evaluation methodologies. Employing a first-principles computational approach supported by measured data, we systematically assess the impact that angiogenesis can have on the EISM's spectral responses. Our findings indicate that these responses are discernibly affected by angiogenesis under distinct physiological conditions, with more substantial tissue alterations leading to accentuated spectral changes in the 550–600 nm region. Accordingly, we propose the use of a customized low-cost spectral index to monitor these processes. Furthermore, our investigation provides a high-fidelity in silico platform for interdisciplinary research on the photobiology of evolving skin melanomas.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 10","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400208","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shang Gao, Hiroshi Ashikaga, Masahito Suzuki, Tommaso Mansi, Young-Ho Kim, Florin-Cristian Ghesu, Jeeun Kang, Emad M. Boctor, Henry R. Halperin, Haichong K. Zhang
{"title":"Cardiac-gated spectroscopic photoacoustic imaging for ablation-induced necrotic lesion visualization","authors":"Shang Gao, Hiroshi Ashikaga, Masahito Suzuki, Tommaso Mansi, Young-Ho Kim, Florin-Cristian Ghesu, Jeeun Kang, Emad M. Boctor, Henry R. Halperin, Haichong K. Zhang","doi":"10.1002/jbio.202400126","DOIUrl":"10.1002/jbio.202400126","url":null,"abstract":"<p>Radiofrequency (RF) ablation is a minimally invasive therapy for atrial fibrillation. Conventional RF procedures lack intraoperative monitoring of ablation-induced necrosis, complicating assessment of completeness. While spectroscopic photoacoustic (sPA) imaging shows promise in distinguishing ablated tissue, multi-spectral imaging is challenging in vivo due to low imaging quality caused by motion. Here, we introduce a cardiac-gated sPA imaging (CG-sPA) framework to enhance image quality using a motion-gated averaging filter, relying on image similarity. Necrotic extent was calculated based on the ratio between spectral unmixed ablated tissue contrast and total tissue contrast, visualizing as a continuous color map to highlight necrotic area. The validation of the concept was conducted in both ex vivo and in vivo swine models. The ablation-induced necrotic lesion was successfully detected throughout the cardiac cycle through CG-sPA imaging. The results suggest the CG-sPA imaging framework has great potential to be incorporated into clinical workflow to guide ablation procedures intraoperatively.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 10","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combinatorial approach of cannabidiol and active-targeted-mediated photodynamic therapy in malignant melanoma treatment","authors":"Nkune Williams Nkune, Heidi Abrahamse","doi":"10.1002/jbio.202400191","DOIUrl":"10.1002/jbio.202400191","url":null,"abstract":"<p>Malignant melanoma (MM) continues to claim millions of lives around the world due to its limited therapeutic alternatives. Photodynamic therapy (PDT) has gained popularity in cancer treatment due it increased potency and low off-target toxicity. Studies have pointed out that the heterogeneity of MM tumours reduces the efficacy of current therapeutic approaches, including PDT, leading to high chances of recurrences post-treatment. Accumulating evidence suggests that cannabidiol (CBD), a non-psychoactive derivative of cannabis, can synergise with various anticancer agents to increase their efficacy. However, CBD demonstrates low bioavailability, which is attributed to factors relating to poor water compatibility, poor absorption and rapid metabolism. Nanotechnology offers tools that address these issues and enhance the biological efficiency and targeted specificity of anticancer agents. Herein, we highlighted the standard therapeutic modalities of MM and their pitfalls, as well as pointed out the need for further investigation into PDT combination therapy with CBD.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 10","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Igor Semenovich Golyak, Dmitriy Romanovich Anfimov, Pavel Pavlovich Demkin, Pavel Vyacheslavovich Berezhanskiy, Olga Aleksandrovna Nebritova, Andrey Nikolaevich Morozov, Igor Leonidovich Fufurin
{"title":"A hybrid learning approach to better classify exhaled breath's infrared spectra: A noninvasive optical diagnosis for socially significant diseases","authors":"Igor Semenovich Golyak, Dmitriy Romanovich Anfimov, Pavel Pavlovich Demkin, Pavel Vyacheslavovich Berezhanskiy, Olga Aleksandrovna Nebritova, Andrey Nikolaevich Morozov, Igor Leonidovich Fufurin","doi":"10.1002/jbio.202400151","DOIUrl":"10.1002/jbio.202400151","url":null,"abstract":"<p>Early diagnosis is crucial for effective treatment of socially significant diseases, such as type 1 diabetes mellitus (T1DM), pneumonia, and asthma. This study employs a diagnostic method based on infrared laser spectroscopy of human exhaled breath. The experimental setup comprises a quantum cascade laser, which emits in a pulsed mode with a peak power of up to 150 mW in the spectral range of 5.3–12.8 <i>μ</i>m (780–1890 cm<sup>−1</sup>), and a Herriott multipass gas cell with a specific optical path length of 76 m. Using this setup, spectra of exhaled breath in the mid-infrared range were obtained from 165 volunteers, including healthy individuals, patients with T1DM, asthma, and pneumonia. The study proposes a hybrid approach for classifying these spectra, utilizing a variational autoencoder for dimensionality reduction and a support vector machine method for classification. The results demonstrate that the proposed hybrid approach outperforms other machine learning method combinations.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 10","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carolina Benetti, Alberto Blay, Luciana Correa, Marco Aurelio Verlangieri, Moisés O. dos Santos, Sergei G. Kazarian, Denise M. Zezell
{"title":"ATR-FTIR spectroscopy imaging of bone repair in mandibular laser-osteotomy","authors":"Carolina Benetti, Alberto Blay, Luciana Correa, Marco Aurelio Verlangieri, Moisés O. dos Santos, Sergei G. Kazarian, Denise M. Zezell","doi":"10.1002/jbio.202400066","DOIUrl":"10.1002/jbio.202400066","url":null,"abstract":"<p>The aim of this study was to verify the effectiveness of attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy in the characterization of bone repair in mandibular osteotomy using erbium, chromium-doped yttrium, scandium, gallium and garnet (Er,Cr:YSGG) laser and multilaminate drill on each side. Two mandible bone fragments were removed from 30 rabbits, and the process of bone repair was studied immediately, 3, 7, 15, 21, and 28 days after the surgery. The histological analysis allowed detecting differences in the early stages of tissue repair after bone cutting performed with the Er,Cr:YSGG laser or multilaminate drill. The ATR-FTIR spectroscopy technique was sensitive to changes in the organic content of bone tissue repair process.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 9","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Huang, Mengshi Jia, Yanyu Li, Mintao Yan, Kehong Wang, Xiaopeng Li
{"title":"Finite element simulation and experimental validation of thermal damage to isolated porcine skin tissue by femtosecond laser welding","authors":"Jun Huang, Mengshi Jia, Yanyu Li, Mintao Yan, Kehong Wang, Xiaopeng Li","doi":"10.1002/jbio.202400224","DOIUrl":"10.1002/jbio.202400224","url":null,"abstract":"<p>The welding effect of the laser on skin tissue is reduced by thermal damage to skin tissue, and greater thermal damage to skin tissue caused by the laser is prevented by predicting thermal damage. In this paper, a finite element model is established for the temperature field of skin tissue scanned by a femtosecond laser to obtain the influence of laser process parameters and scanning path on the thermal damage parameters of skin tissue and the thermal damage area, and verified experimentally. The results show that the established finite element model is accurate and can accurately reflect the temperature distribution during the process of femtosecond laser welding of porcine skin tissues; used to predict the thermal damage parameters of the skin tissues and the thermal damage area; and provide guidance for the study of the femtosecond laser welding of the skin tissues process to obtain the optimal process parameters.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 9","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Karthika, Arpitha Anantharaju, Dhanush Koodi, Hardik J. Pandya, Uttam M. Pal
{"title":"Label-free assessment of the transformation zone using multispectral diffuse optical imaging toward early detection of cervical cancer","authors":"J. Karthika, Arpitha Anantharaju, Dhanush Koodi, Hardik J. Pandya, Uttam M. Pal","doi":"10.1002/jbio.202400114","DOIUrl":"10.1002/jbio.202400114","url":null,"abstract":"<p>The assessment of the transformation zone is a critical step toward diagnosis of cervical cancer. This work involves the development of a portable, label-free transvaginal multispectral diffuse optical imaging (MDOI) imaging probe to estimate the transformation zone. The images were acquired from <i>N</i> = 5 (<i>N</i> = 1 normal, <i>N</i> = 2 premalignant, and <i>N</i> = 2 malignant) patients. Key parameters such as spectral contrast ratio (<i>ρ</i>) at 545 and 450 nm were higher in premalignant (0.29, 0.25 for 450 nm and 0.30, 0.17 for 545 nm) as compared to the normal patients (0.13 and 0.14 for 450 and 545 nm, respectively). The threshold for the spectral intensity ratio R610/R450 and R610/R545 can also be used as a marker to correlate with the new and original squamous columnar junction (SCJ), respectively. The pilot study highlights the use of new markers such as spectral contrast ratio (<i>ρ</i>) and spectral intensity ratio (R610/R450 and R610/R545) images.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 9","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Machikhin, Anastasia Guryleva, Anirban Chakraborty, Demid Khokhlov, Alexander Selyukov, Leonid Shuman, Valeriya Bukova, Ekaterina Efremova, Ekaterina Rudenko, Alexander Burlakov
{"title":"Microscopic photoplethysmography-based evaluation of cardiotoxicity in whitefish larvae induced by acute exposure to cadmium and phenol","authors":"Alexander Machikhin, Anastasia Guryleva, Anirban Chakraborty, Demid Khokhlov, Alexander Selyukov, Leonid Shuman, Valeriya Bukova, Ekaterina Efremova, Ekaterina Rudenko, Alexander Burlakov","doi":"10.1002/jbio.202400111","DOIUrl":"10.1002/jbio.202400111","url":null,"abstract":"<p>Toxic environmental pollutants pose a health risk for both humans and animals. Accumulation of industrial contaminants in freshwater fish may become a significant threat to biodiversity. Comprehensive monitoring of the impact of environmental stressors on fish functional systems is important and use of non-invasive tools that can detect the presence of these toxicants in vivo is desirable. The blood circulatory system, by virtue of its sensitivity to the external stimuli, could be an informative indicator of chemical exposure. In this study, microscopic photoplethysmography-based approach was used to investigate the cardiac activity in broad whitefish larvae (<i>Coregonus nasus</i>) under acute exposure to cadmium and phenol. We identified contamination-induced abnormalities in the rhythms of the ventricle and atrium. Our results allow introducing additional endpoints to evaluate the cardiac dysfunction in fish larvae and contribute to the non-invasive evaluation of the toxic effects of industrial pollutants on bioaccumulation and aquatic life.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 9","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}