Xinyuan Cao, Yifeng Lu, Tingting Zhu, Zhilong Yan, Ke Li, Jianhua Mo
{"title":"Diagnosis and Post-Treatment Follow-Up Evaluation of Melasma Using Optical Coherence Tomography and Deep Learning","authors":"Xinyuan Cao, Yifeng Lu, Tingting Zhu, Zhilong Yan, Ke Li, Jianhua Mo","doi":"10.1002/jbio.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Melasma is a common pigmentary disorder accompanied by tissue changes in composition and structure through the epidermis and dermis. In this study, we propose to employ optical coherence tomography (OCT) combined with deep learning techniques for melasma diagnostics. Specifically, a portable spectral domain OCT system with a handheld probe was developed for clinical skin imaging. Then, a diagnostic model was built based on the VGG16 neural network by adding a spatial attention mechanism. The results show that a good differentiation with an accuracy of 94.2% can be achieved among health datasets from healthy volunteers, and melasma and tissue-around-melasma datasets from melasma patients. Moreover, the same trained model was applied to treatment evaluation, showing a good capability to assess antivascular medicine treatment. Thus, it can be concluded that OCT combined with deep learning techniques has a good potential to aid in clinical diagnosis and treatment evaluation of melasma.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 6","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.70006","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Melasma is a common pigmentary disorder accompanied by tissue changes in composition and structure through the epidermis and dermis. In this study, we propose to employ optical coherence tomography (OCT) combined with deep learning techniques for melasma diagnostics. Specifically, a portable spectral domain OCT system with a handheld probe was developed for clinical skin imaging. Then, a diagnostic model was built based on the VGG16 neural network by adding a spatial attention mechanism. The results show that a good differentiation with an accuracy of 94.2% can be achieved among health datasets from healthy volunteers, and melasma and tissue-around-melasma datasets from melasma patients. Moreover, the same trained model was applied to treatment evaluation, showing a good capability to assess antivascular medicine treatment. Thus, it can be concluded that OCT combined with deep learning techniques has a good potential to aid in clinical diagnosis and treatment evaluation of melasma.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.