Diagnosis and Post-Treatment Follow-Up Evaluation of Melasma Using Optical Coherence Tomography and Deep Learning.

Xinyuan Cao, Yifeng Lu, Tingting Zhu, Zhilong Yan, Ke Li, Jianhua Mo
{"title":"Diagnosis and Post-Treatment Follow-Up Evaluation of Melasma Using Optical Coherence Tomography and Deep Learning.","authors":"Xinyuan Cao, Yifeng Lu, Tingting Zhu, Zhilong Yan, Ke Li, Jianhua Mo","doi":"10.1002/jbio.70006","DOIUrl":null,"url":null,"abstract":"<p><p>Melasma is a common pigmentary disorder accompanied by tissue changes in composition and structure through the epidermis and dermis. In this study, we propose to employ optical coherence tomography (OCT) combined with deep learning techniques for melasma diagnostics. Specifically, a portable spectral domain OCT system with a handheld probe was developed for clinical skin imaging. Then, a diagnostic model was built based on the VGG16 neural network by adding a spatial attention mechanism. The results show that a good differentiation with an accuracy of 94.2% can be achieved among health datasets from healthy volunteers, and melasma and tissue-around-melasma datasets from melasma patients. Moreover, the same trained model was applied to treatment evaluation, showing a good capability to assess antivascular medicine treatment. Thus, it can be concluded that OCT combined with deep learning techniques has a good potential to aid in clinical diagnosis and treatment evaluation of melasma.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e70006"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Melasma is a common pigmentary disorder accompanied by tissue changes in composition and structure through the epidermis and dermis. In this study, we propose to employ optical coherence tomography (OCT) combined with deep learning techniques for melasma diagnostics. Specifically, a portable spectral domain OCT system with a handheld probe was developed for clinical skin imaging. Then, a diagnostic model was built based on the VGG16 neural network by adding a spatial attention mechanism. The results show that a good differentiation with an accuracy of 94.2% can be achieved among health datasets from healthy volunteers, and melasma and tissue-around-melasma datasets from melasma patients. Moreover, the same trained model was applied to treatment evaluation, showing a good capability to assess antivascular medicine treatment. Thus, it can be concluded that OCT combined with deep learning techniques has a good potential to aid in clinical diagnosis and treatment evaluation of melasma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信