Shihori Tsushima, Yuma Nishi, Ryo Suzuki, Masaru Tachibana, Robert A Kanaly, Jiro F Mori
{"title":"Formation of Biogenic Manganese Oxide Nodules on Hyphae of a New Fungal Isolate of Periconia That Immobilizes Aqueous Copper.","authors":"Shihori Tsushima, Yuma Nishi, Ryo Suzuki, Masaru Tachibana, Robert A Kanaly, Jiro F Mori","doi":"10.1264/jsme2.ME23102","DOIUrl":"10.1264/jsme2.ME23102","url":null,"abstract":"<p><p>Mn(II)-oxidizing microorganisms are considered to play significant roles in the natural geochemical cycles of Mn and other heavy metals because the insoluble biogenic Mn oxides (BMOs) that are produced by these microorganisms adsorb other dissolved heavy metals and immobilize them as precipitates. In the present study, a new Mn(II)-oxidizing fungal strain belonging to the ascomycete genus Periconia, a well-studied plant-associating fungal genus with Mn(II)-oxidizing activity that has not yet been exami-ned in detail, was isolated from natural groundwater outflow sediment. This isolate, named strain TS-2, was confirmed to oxidize dissolved Mn(II) and produce insoluble BMOs that formed characteristic, separately-located nodules on their hyphae while leaving major areas of the hyphae free from encrustation. These BMO nodules also adsorbed and immobilized dissolved Cu(II), a model analyte of heavy metals, as evidenced by elemental mapping ana-lyses of fungal hyphae-BMO assemblages using a scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX). Analyses of functional genes within the whole genome of strain TS-2 further revealed the presence of multiple genes predicted to encode laccases/multicopper oxidases that were potentially responsible for Mn(II) oxidation by this strain. The formation of BMO nodules may have functioned to prevent the complete encrustation of fungal hyphae, thereby enabling the control of heavy metal concentrations in their local microenvironments while maintaining hyphal functionality. The present results will expand our knowledge of the physiological and morphological traits of Mn(II)-oxidizing Periconia, which may affect the natural cycle of heavy metals through their immobilization.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Root Colonization by Trichoderma atroviride Triggers Induced Systemic Resistance Primarily Independent of the Chitin-mediated Signaling Pathway in Arabidopsis.","authors":"Ayae Sakai, Hisako Yamagata, Keigo Naito, Mai Yoshioka, Takaya Tominaga, Shinsuke Ifuku, Hironori Kaminaka","doi":"10.1264/jsme2.ME24038","DOIUrl":"10.1264/jsme2.ME24038","url":null,"abstract":"<p><p>Beneficial root endophytic fungi induce systemic responses, growth promotion, and induced systemic resistance (ISR) in colonized host plants. The soil application of chitin, a main component of fungal cell walls, also systemically induces disease resistance. Therefore, chitin recognition and its downstream signaling pathway mediate ISR triggered by beneficial fungi colonizing the root. The present study compared systemic disease resistance and transcriptional responses induced by Trichoderma, a representative beneficial root endophytic fungus, and chitin in Arabidopsis. Significant plant growth promotion was observed under root colonization by the three beneficial fungi tested: Trichoderma atroviride, Serendipita indica, and S. vermifera. Only T. atroviride and S. indica triggered ISR against the necrotrophic fungal pathogen Alternaria brassicicola. Induced systemic resistance triggered by T. atroviride was compromised in the chitin-receptor mutant, whereas systemic resistance caused by the soil application of chitin was not. A transcriptome ana-lysis demonstrated that chitin-regulated genes were mostly shared with those regulated by T. atroviride; however, many of the latter were specific. The commonly enriched gene ontologies for these genes indicated that the T. atroviride inoculation and chitin application systemically controlled similar transcriptional responses, mainly associated with cell wall functions. Therefore, Trichoderma may trigger ISR primarily independent of the chitin-mediated signaling pathway; however, chitin and Trichoderma may systemically induce similar cellular functions aboveground.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Satoshi Wakai, Sanae Sakai, Tatsuo Nozaki, Masayuki Watanabe, Ken Takai
{"title":"Accelerated Iron Corrosion by Microbial Consortia Enriched from Slime-like Precipitates from a Corroded Metal Apparatus Deployed in a Deep-sea Hydrothermal System.","authors":"Satoshi Wakai, Sanae Sakai, Tatsuo Nozaki, Masayuki Watanabe, Ken Takai","doi":"10.1264/jsme2.ME23089","DOIUrl":"10.1264/jsme2.ME23089","url":null,"abstract":"<p><p>Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DiGAlign: Versatile and Interactive Visualization of Sequence Alignment for Comparative Genomics.","authors":"Yosuke Nishimura, Kohei Yamada, Yusuke Okazaki, Hiroyuki Ogata","doi":"10.1264/jsme2.ME23061","DOIUrl":"10.1264/jsme2.ME23061","url":null,"abstract":"<p><p>With the explosion of available genomic information, comparative genomics has become a central approach to understanding microbial ecology and evolution. We developed DiGAlign (https://www.genome.jp/digalign/), a web server that provides versatile functionality for comparative genomics with an intuitive interface. It allows the user to perform the highly customizable visualization of a synteny map by simply uploading nucleotide sequences of interest, ranging from a specific region to the whole genome landscape of microorganisms and viruses. DiGAlign will serve a wide range of biological researchers, particularly experimental biologists, with multifaceted features that allow the rapid characterization of genomic sequences of interest and the generation of a publication-ready figure.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vertical Distribution and Seasonal Patterns of Candidatus Nitrotoga in a Sub-Alpine Lake.","authors":"Albin Alfreider, Manuel Harringer","doi":"10.1264/jsme2.ME23086","DOIUrl":"10.1264/jsme2.ME23086","url":null,"abstract":"<p><p>The nitrite oxidizing bacterial genus Ca. Nitrotoga was only recently discovered to be widespread in freshwater systems; however, limited information is currently available on the environmental factors and seasonal effects that influence its distribution in lakes. In a one-year study in a dimictic lake, based on monthly sampling along a vertical profile, the droplet digital PCR quantification of Ca. Nitrotoga showed a strong spatio-temporal patchiness. A correlation ana-lysis with environmental parameters revealed that the abundance of Ca. Nitrotoga correlated with dissolved oxygen and ammonium, suggesting that the upper hypolimnion of the lake is the preferred habitat.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of NaCl Treatment on Root Nodule Formation, Isoflavone Secretion in Soybean, and Nodulation Gene Expression in Rhizobia.","authors":"Yoshikazu Nitawaki, Takaaki Yasukochi, Shinya Naono, Akihiro Yamamoto, Yuichi Saeki","doi":"10.1264/jsme2.ME24023","DOIUrl":"10.1264/jsme2.ME24023","url":null,"abstract":"<p><p>We herein investigated the effects of salt (NaCl) stress on soybean nodulation by rhizobial strains. We specifically exami-ned: (1) the effects of NaCl on nodule maturity and positioning by inoculating three rhizobial strains (Bradyrhizobium diazoefficiens USDA110<sup>T</sup>, Bradyrhizobium elkanii USDA31, and Sinorhizobium fredii USDA191) onto soybean variety CNS, (2) the effects of the NaCl treatment on isoflavones (daidzein and genistein) secretion by CNS, (3) the effects of the NaCl treatment on gene expression induced by daidzein and genistein in rhizobia, and (4) the effects of the NaCl treatment on rhizobial growth. The results obtained were as follows: (1) the NaCl treatment delayed nodule development and reduced nodulation on the primary root following the USDA110<sup>T</sup> inoculation, minimal sensitivity regarding nodule formation in the USDA 31 inoculation, and significantly increased the mature nodule number and nodules on the primary root following the USDA 191 inoculation. (2) The NaCl treatment significantly reduced the secretion of daidzein from soybean roots, but did not significantly affect that of genistein. (3) NaCl treatment induced a significant decrease in genistein-induced nodC expression in USDA110<sup>T</sup>, but not in USDA31, and also caused a significant reduction in daidzein-induced nodC expression, but not genistein-induced expression, in USDA191. (4) NaCl treatment reduced survivability under acidic conditions, but increased survivability under saline-alkaline conditions for USDA191 than bradyrhizobia. These results indicate that saline conditions give S. fredii a competitive advantage over Bradyrhizobium during soybean infection.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive Insights into Potential Metabolic Functions of Myxococcota in Activated Sludge Systems.","authors":"Hazuki Kurashita, Masashi Hatamoto, Shun Tomita, Takashi Yamaguchi, Takashi Narihiro, Kyohei Kuroda","doi":"10.1264/jsme2.ME24068","DOIUrl":"10.1264/jsme2.ME24068","url":null,"abstract":"<p><p>Myxobacteria, belonging to the phylum Myxococcota, are ubiquitous in soil, marine, and other environments. A recent metagenomic sequencing ana-lysis showed that Myxococcota are predominant in activated sludge systems; however, their metabolic traits remain unclear. In the present study, we exami-ned the potential biological functions of 46 metagenomic bins of Myxococcota reconstructed from activated sludge samples from four municipal sewage treatment plants. The results obtained showed that most Myxococcota bins had an almost complete set of genes associated with glycolysis and the TCA cycle. The Palsa-1104 and Polyangiales bins contained the glycoside hydrolase GH5 and peptidase M23, which are presumably involved in lysis of the cell wall and cellular cytoplasm, suggesting that some Myxococcota from activated sludge prey on other microorganisms. The cell contact-dependent predatory functions of Myxococcus xanthus are conserved in the family Myxococcaceae, but not in other families. Two bins belonging to Palsa-1104 had phototrophic gene clusters, indicating the potential for heterotrophic and autotrophic metabolism by these microbes. In assessments of the social behavior of Myxococcota in activated sludge, the FruA gene and C-signal gene, which are involved in the regulation of fruiting body formation, were lacking in Myxococcota bins, suggesting their inability to form fruiting bodies. In addition, multiple bins of Myxococcota had novel secondary metabolite biosynthesis gene clusters that may be used for the predation of other bacteria in activated sludge. Our metagenome-based ana-lyses provide novel insights into the microbial interactions associated with Myxococcota in activated sludge ecosystems.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasuhiro Tanaka,Erina Tozawa,Tomoki Iwashita,Yosuke Morishita,Hideyuki Tamaki,Tadashi Toyama,Masaaki Morikawa,Yoichi Kamagata,Kazuhiro Mori
{"title":"Successful Isolation of Diverse Verrucomicrobiota Strains through the Duckweed-Microbes Co-cultivation Method.","authors":"Yasuhiro Tanaka,Erina Tozawa,Tomoki Iwashita,Yosuke Morishita,Hideyuki Tamaki,Tadashi Toyama,Masaaki Morikawa,Yoichi Kamagata,Kazuhiro Mori","doi":"10.1264/jsme2.me24019","DOIUrl":"https://doi.org/10.1264/jsme2.me24019","url":null,"abstract":"The \"duckweed-microbes co-cultivation method\" is a microbial isolation technique that effectively recovers diverse microbes, including rarely cultivated bacterial phyla, from environmental samples. In this method, aseptic duckweed and microbes collected from an environmental sample are co-cultivated for several days, and duckweed-associated microbes are then isolated from its roots using a conventional agar plate-based cultivation method. We herein propose several improvements to the method in order to specifically obtain members of the rarely cultivated bacterial phylum, Verrucomicrobiota. In systems using river water as the inoculum, the marked enrichment of Verrucomicrobiota was observed after 10 days of co-cultivation, particularly in the roots and co-cultivated media. We also successfully isolated 44 strains belonging to subdivisions 1, 3, and 4 of the phylum Verrucomicrobiota from these systems. This was achieved by changing the concentration of nitrogen in the co-cultivation medium, which is known to affect duckweed growth and/or metabolism, and by subjecting the fronds and co-cultivated media as well as the roots after co-cultivation to microbial isolation.","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"13 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polyethylene Biodegradation by an Artificial Bacterial Consortium: Rhodococcus as a Competitive Plastisphere Species.","authors":"Jyothi Priya Putcha, Wataru Kitagawa","doi":"10.1264/jsme2.ME24031","DOIUrl":"10.1264/jsme2.ME24031","url":null,"abstract":"<p><p>Polyethylene (PE), a widely used recalcitrant synthetic polymer, is a major global pollutant. PE has very low biodegradability due to its rigid C-C backbone and high hydrophobicity. Although microorganisms have been suggested to possess PE-degrading enzymes, our understanding of the PE biodegradation process and its overall applicability is still lacking. In the present study, we used an artificial bacterial consortium for PE biodegradation to compensate for the enzyme availability and metabolic capabilities of individual bacterial strains. Consortium members were selected based on available literature and preliminary screening for PE-degrading enzymes, including laccases, lipases, esterases, and alkane hydroxylases. PE pellets were incubated with the consortium for 200 days. A next-generation sequencing ana-lysis of the consortium community of the culture broth and on the PE pellet identified Rhodococcus as the dominant bacteria. Among the Rhodococcus strains in the consortium, Rhodococcus erythropolis was predominant. Scanning electron microscopy (SEM) revealed multilayered biofilms with bacteria embedded on the PE surface. SEM micrographs of PE pellets after biofilm removal showed bacterial pitting and surface deterioration. Multicellular biofilm structures and surface biodeterioration were observed in an incubation of PE pellets with R. erythropolis alone. The present study demonstrated that PE may be biodegraded by an artificially constructed bacterial consortium, in which R. erythropolis has emerged as an important player. The results showing the robust colonization of hydrophobic PE by R. erythropolis and that it naturally possesses and extracellularly expresses several target enzymes suggest its potential as a host for further improved PE biodeterioration by genetic engineering technology using a well-studied host-vector system.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huynh Van Thao, Mitsunori Tarao, Hideshige Takada, Tomoyasu Nishizawa, Tran Sy Nam, Nguyen Van Cong, Do Thi Xuan
{"title":"Methanotrophic Communities and Cultivation of Methanotrophs from Rice Paddy Fields Fertilized with Pig-livestock Biogas Digestive Effluent and Synthetic Fertilizer in the Vietnamese Mekong Delta.","authors":"Huynh Van Thao, Mitsunori Tarao, Hideshige Takada, Tomoyasu Nishizawa, Tran Sy Nam, Nguyen Van Cong, Do Thi Xuan","doi":"10.1264/jsme2.ME24021","DOIUrl":"10.1264/jsme2.ME24021","url":null,"abstract":"<p><p>Biogas digestive effluent (BDE) has been applied to rice fields in the Vietnamese Mekong Delta (VMD). However, limited information is available on the community composition and isolation of methanotrophs in these fields. Therefore, the present study aimed (i) to clarify the responses of the methanotrophic community in paddy fields fertilized with BDE or synthetic fertilizer (SF) and (ii) to isolate methanotrophs from these fields. Methanotrophic communities were detected in rhizospheric soil at the rice ripening stage throughout 2 cropping seasons, winter-spring (dry) and summer-autumn (wet). Methanotrophs were isolated from dry-season soil samples. Although the continued application of BDE markedly reduced net methane oxidation potential and the copy number of pmoA genes, a dissimilarity ordination ana-lysis revealed no significant difference in the methanotrophic community between BDE and SF fields (P=0.167). Eleven methanotrophic genera were identified in the methanotrophic community, and Methylosinus and Methylomicrobium were the most abundant, accounting for 32.3-36.7 and 45.7-47.3%, respectively. Type-I methanotrophs (69.4-73.7%) were more abundant than type-II methanotrophs (26.3-30.6%). Six methanotrophic strains belonging to 3 genera were successfully isolated, which included type I (Methylococcus sp. strain BE1 and Methylococcus sp. strain SF3) and type II (Methylocystis sp. strain BE2, Methylosinus sp. strain SF1, Methylosinus sp. strain SF2, and Methylosinus sp. strain SF4). This is the first study to examine the methanotrophic community structure in and isolate several methanotrophic strains from BDE-fertilized fields in VMD.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821765/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}