{"title":"粘球菌在活性污泥系统中潜在代谢功能的综合见解。","authors":"Hazuki Kurashita, Masashi Hatamoto, Shun Tomita, Takashi Yamaguchi, Takashi Narihiro, Kyohei Kuroda","doi":"10.1264/jsme2.ME24068","DOIUrl":null,"url":null,"abstract":"<p><p>Myxobacteria, belonging to the phylum Myxococcota, are ubiquitous in soil, marine, and other environments. A recent metagenomic sequencing ana-lysis showed that Myxococcota are predominant in activated sludge systems; however, their metabolic traits remain unclear. In the present study, we exami-ned the potential biological functions of 46 metagenomic bins of Myxococcota reconstructed from activated sludge samples from four municipal sewage treatment plants. The results obtained showed that most Myxococcota bins had an almost complete set of genes associated with glycolysis and the TCA cycle. The Palsa-1104 and Polyangiales bins contained the glycoside hydrolase GH5 and peptidase M23, which are presumably involved in lysis of the cell wall and cellular cytoplasm, suggesting that some Myxococcota from activated sludge prey on other microorganisms. The cell contact-dependent predatory functions of Myxococcus xanthus are conserved in the family Myxococcaceae, but not in other families. Two bins belonging to Palsa-1104 had phototrophic gene clusters, indicating the potential for heterotrophic and autotrophic metabolism by these microbes. In assessments of the social behavior of Myxococcota in activated sludge, the FruA gene and C-signal gene, which are involved in the regulation of fruiting body formation, were lacking in Myxococcota bins, suggesting their inability to form fruiting bodies. In addition, multiple bins of Myxococcota had novel secondary metabolite biosynthesis gene clusters that may be used for the predation of other bacteria in activated sludge. Our metagenome-based ana-lyses provide novel insights into the microbial interactions associated with Myxococcota in activated sludge ecosystems.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821767/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Insights into Potential Metabolic Functions of Myxococcota in Activated Sludge Systems.\",\"authors\":\"Hazuki Kurashita, Masashi Hatamoto, Shun Tomita, Takashi Yamaguchi, Takashi Narihiro, Kyohei Kuroda\",\"doi\":\"10.1264/jsme2.ME24068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myxobacteria, belonging to the phylum Myxococcota, are ubiquitous in soil, marine, and other environments. A recent metagenomic sequencing ana-lysis showed that Myxococcota are predominant in activated sludge systems; however, their metabolic traits remain unclear. In the present study, we exami-ned the potential biological functions of 46 metagenomic bins of Myxococcota reconstructed from activated sludge samples from four municipal sewage treatment plants. The results obtained showed that most Myxococcota bins had an almost complete set of genes associated with glycolysis and the TCA cycle. The Palsa-1104 and Polyangiales bins contained the glycoside hydrolase GH5 and peptidase M23, which are presumably involved in lysis of the cell wall and cellular cytoplasm, suggesting that some Myxococcota from activated sludge prey on other microorganisms. The cell contact-dependent predatory functions of Myxococcus xanthus are conserved in the family Myxococcaceae, but not in other families. Two bins belonging to Palsa-1104 had phototrophic gene clusters, indicating the potential for heterotrophic and autotrophic metabolism by these microbes. In assessments of the social behavior of Myxococcota in activated sludge, the FruA gene and C-signal gene, which are involved in the regulation of fruiting body formation, were lacking in Myxococcota bins, suggesting their inability to form fruiting bodies. In addition, multiple bins of Myxococcota had novel secondary metabolite biosynthesis gene clusters that may be used for the predation of other bacteria in activated sludge. Our metagenome-based ana-lyses provide novel insights into the microbial interactions associated with Myxococcota in activated sludge ecosystems.</p>\",\"PeriodicalId\":18482,\"journal\":{\"name\":\"Microbes and Environments\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1264/jsme2.ME24068\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME24068","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Comprehensive Insights into Potential Metabolic Functions of Myxococcota in Activated Sludge Systems.
Myxobacteria, belonging to the phylum Myxococcota, are ubiquitous in soil, marine, and other environments. A recent metagenomic sequencing ana-lysis showed that Myxococcota are predominant in activated sludge systems; however, their metabolic traits remain unclear. In the present study, we exami-ned the potential biological functions of 46 metagenomic bins of Myxococcota reconstructed from activated sludge samples from four municipal sewage treatment plants. The results obtained showed that most Myxococcota bins had an almost complete set of genes associated with glycolysis and the TCA cycle. The Palsa-1104 and Polyangiales bins contained the glycoside hydrolase GH5 and peptidase M23, which are presumably involved in lysis of the cell wall and cellular cytoplasm, suggesting that some Myxococcota from activated sludge prey on other microorganisms. The cell contact-dependent predatory functions of Myxococcus xanthus are conserved in the family Myxococcaceae, but not in other families. Two bins belonging to Palsa-1104 had phototrophic gene clusters, indicating the potential for heterotrophic and autotrophic metabolism by these microbes. In assessments of the social behavior of Myxococcota in activated sludge, the FruA gene and C-signal gene, which are involved in the regulation of fruiting body formation, were lacking in Myxococcota bins, suggesting their inability to form fruiting bodies. In addition, multiple bins of Myxococcota had novel secondary metabolite biosynthesis gene clusters that may be used for the predation of other bacteria in activated sludge. Our metagenome-based ana-lyses provide novel insights into the microbial interactions associated with Myxococcota in activated sludge ecosystems.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.