Microbes and Environments最新文献

筛选
英文 中文
Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. 细胞周期扰动解除了有丝分裂进程与有丝分裂后细胞侵袭行为之间的联系。
4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-02-07 DOI: 10.1101/2023.03.16.533034
Michael A Q Martinez, Chris Z Zhao, Frances E Q Moore, Callista Yee, Wan Zhang, Kang Shen, Benjamin L Martin, David Q Matus
{"title":"Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell.","authors":"Michael A Q Martinez, Chris Z Zhao, Frances E Q Moore, Callista Yee, Wan Zhang, Kang Shen, Benjamin L Martin, David Q Matus","doi":"10.1101/2023.03.16.533034","DOIUrl":"10.1101/2023.03.16.533034","url":null,"abstract":"<p><p>The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of <i>C. elegans</i> anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state, initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21<sup>CIP1</sup>/p27<sup>KIP1</sup>) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21<sup>CIP1</sup>/p27<sup>KIP1</sup>), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88287778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferrihydrite Addition Activated Geobacteraceae, the Most Abundant Iron-reducing Diazotrophs, and Suppressed Methanogenesis by Heterogeneous Methanogens in Xylan-amended Paddy Soil Microcosms. 在添加了木聚糖的水稻田土壤微生态系统中,添加亚铁能激活最丰富的铁还原重氮菌--革囊菌,并抑制异型甲烷菌的甲烷生成。
IF 2.2 4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-01-01 DOI: 10.1264/jsme2.me24028
Yoko Masuda,Mitsutaka Chihara,Keishi Senoo
{"title":"Ferrihydrite Addition Activated Geobacteraceae, the Most Abundant Iron-reducing Diazotrophs, and Suppressed Methanogenesis by Heterogeneous Methanogens in Xylan-amended Paddy Soil Microcosms.","authors":"Yoko Masuda,Mitsutaka Chihara,Keishi Senoo","doi":"10.1264/jsme2.me24028","DOIUrl":"https://doi.org/10.1264/jsme2.me24028","url":null,"abstract":"Paddy fields are a major emission source of the greenhouse gas methane. In the present study, the addition of ferrihydrite to xylan-amended paddy soil microcosms suppressed methane emissions. PCR-based and metatranscriptomic ana-lyses revealed that the addition of ferrihydrite suppressed methanogenesis by heterogeneous methanogens and simultaneously activated Geobacteraceae, the most abundant iron-reducing diazotrophs. Geobacteraceae may preferentially metabolize xylan and/or xylan-derived carbon compounds that are utilized by methanogens. Geomonas terrae R111 utilized xylan as a growth substrate under liquid culture conditions. This may constitute a novel mechanism for the mitigation of methane emissions previously observed in ferric iron oxide-applied paddy field soils.","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"62 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author's correction: Relationship Between Rumen Microbial Composition and Fibrolytic Isozyme Activity During the Biodegradation of Rice Straw Powder Using Rumen Fluid. 作者的更正:利用瘤胃液生物降解稻草粉过程中瘤胃微生物组成与纤维分解异构酶活性之间的关系。
IF 2.1 4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-01-01 DOI: 10.1264/jsme2.ME23041e
Shuhei Takizawa, Ryoki Asano, Kenichi Abe, Yasuhiro Fukuda, Yasunori Baba, Riku Sakurai, Chika Tada, Yutaka Nakai
{"title":"Author's correction: Relationship Between Rumen Microbial Composition and Fibrolytic Isozyme Activity During the Biodegradation of Rice Straw Powder Using Rumen Fluid.","authors":"Shuhei Takizawa, Ryoki Asano, Kenichi Abe, Yasuhiro Fukuda, Yasunori Baba, Riku Sakurai, Chika Tada, Yutaka Nakai","doi":"10.1264/jsme2.ME23041e","DOIUrl":"10.1264/jsme2.ME23041e","url":null,"abstract":"","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Do Thermophiles Organize Their Genomes? 嗜热菌如何组织基因组?
IF 2.2 4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-01-01 DOI: 10.1264/jsme2.ME23087
Naomichi Takemata
{"title":"How Do Thermophiles Organize Their Genomes?","authors":"Naomichi Takemata","doi":"10.1264/jsme2.ME23087","DOIUrl":"10.1264/jsme2.ME23087","url":null,"abstract":"<p><p>All cells must maintain the structural and functional integrity of the genome under a wide range of environments. High temperatures pose a formidable challenge to cells by denaturing the DNA double helix, causing chemical damage to DNA, and increasing the random thermal motion of chromosomes. Thermophiles, predominantly classified as bacteria or archaea, exhibit an exceptional capacity to mitigate these detrimental effects and prosper under extreme thermal conditions, with some species tolerating temperatures higher than 100°C. Their genomes are mainly characterized by the presence of reverse gyrase, a unique topoisomerase that introduces positive supercoils into DNA. This enzyme has been suggested to maintain the genome integrity of thermophiles by limiting DNA melting and mediating DNA repair. Previous studies provided significant insights into the mechanisms by which NAPs, histones, SMC superfamily proteins, and polyamines affect the 3D genomes of thermophiles across different scales. Here, I discuss current knowledge of the genome organization in thermophiles and pertinent research questions for future investigations.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 5","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Strain of the Cyanobacterial Growth-promoting Bacterium, Rhodococcus sp. AF2108, Enhances the Growth of Synechococcus elongatus. 一株新的蓝细菌促生长菌红球菌AF2108促进长聚球菌生长。
IF 2.1 4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-01-01 DOI: 10.1264/jsme2.ME24050
Pei Yu Tan, Yuta Kato, Masaaki Konishi
{"title":"A Novel Strain of the Cyanobacterial Growth-promoting Bacterium, Rhodococcus sp. AF2108, Enhances the Growth of Synechococcus elongatus.","authors":"Pei Yu Tan, Yuta Kato, Masaaki Konishi","doi":"10.1264/jsme2.ME24050","DOIUrl":"https://doi.org/10.1264/jsme2.ME24050","url":null,"abstract":"<p><p>To enhance the growth of the cyanobacterium Synechococcus elongatus, the present study conducted direct screening for cyanobacterium growth-promoting bacteria (CGPB) using co-cultures. Of the 144 strains obtained, four novel CGPB strains were isolated and phylogenetically identified: Rhodococcus sp. AF2108, Ancylobacter sp. GA1226, Xanthobacter sp. AF2111, and Shewanella sp. OR151. A co-culture of S. elongatus with the most effective CGPB strain, Rhodococcus sp. AF2108, achieved a 8.5-fold increase in the chlo-rophyll content of cyanobacterial cells over that in a monoculture. A flow cytometric ana-lysis showed a 3.9-fold increase in the number of S. elongatus cells in the co-culture with Rhodococcus sp. AF2108. These results were attributed to increases in forward scattering and chlo-rophyll fluorescence intensities. The new Rhodococcus strain appears to be one of the most effective CGPBs described to date.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Genomics and Characterization of Shigella flexneri Isolated from Urban Wastewater. 从城市污水中分离出的柔性志贺氏菌的比较基因组学及其特征。
IF 2.1 4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-01-01 DOI: 10.1264/jsme2.ME23105
Sarmishta Mukhopadhyay, Meesha Singh, Mahashweta Mitra Ghosh, Santanu Chakrabarti, Sayak Ganguli
{"title":"Comparative Genomics and Characterization of Shigella flexneri Isolated from Urban Wastewater.","authors":"Sarmishta Mukhopadhyay, Meesha Singh, Mahashweta Mitra Ghosh, Santanu Chakrabarti, Sayak Ganguli","doi":"10.1264/jsme2.ME23105","DOIUrl":"10.1264/jsme2.ME23105","url":null,"abstract":"<p><p>Shigella species are a group of highly transmissible Gram-negative pathogens. Increasing reports of infection with extensively drug-resistant varieties of this stomach bug has convinced the World Health Organization to prioritize Shigella for novel therapeutic interventions. We herein coupled the whole-genome sequencing of a natural isolate of Shigella flexneri with a pangenome ana-lysis to characterize pathogen genomics within this species, which will provide us with an insight into its existing genomic diversity and highlight the root causes behind the emergence of quick vaccine escape variants. The isolated novel strain of S. flexneri contained ~4,500 protein-coding genes, 57 of which imparted resistance to antibiotics. A comparative pan-genomic ana-lysis revealed genomic variability of ~64%, the shared conservation of core genes in central metabolic processes, and the enrichment of unique/accessory genes in virulence and defense mechanisms that contributed to much of the observed antimicrobial resistance (AMR). A pathway ana-lysis of the core genome mapped 22 genes to 2 antimicrobial resistance pathways, with the bulk coding for multidrug efflux pumps and two component regulatory systems that are considered to work synergistically towards the development of resistance phenotypes. The prospective evolvability of Shigella species as witnessed by the marked difference in genomic content, the strain-specific essentiality of unique/accessory genes, and the inclusion of a potent resistance mechanism within the core genome, strengthens the possibility of novel serotypes emerging in the near future and emphasizes the importance of tracking down genomic diversity in drug/vaccine design and AMR governance.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated Iron Corrosion by Microbial Consortia Enriched from Slime-like Precipitates from a Corroded Metal Apparatus Deployed in a Deep-sea Hydrothermal System. 部署在深海热液系统中的腐蚀金属装置产生的粘液状沉淀物中富集的微生物群加速了铁的腐蚀。
IF 2.2 4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-01-01 DOI: 10.1264/jsme2.ME23089
Satoshi Wakai, Sanae Sakai, Tatsuo Nozaki, Masayuki Watanabe, Ken Takai
{"title":"Accelerated Iron Corrosion by Microbial Consortia Enriched from Slime-like Precipitates from a Corroded Metal Apparatus Deployed in a Deep-sea Hydrothermal System.","authors":"Satoshi Wakai, Sanae Sakai, Tatsuo Nozaki, Masayuki Watanabe, Ken Takai","doi":"10.1264/jsme2.ME23089","DOIUrl":"https://doi.org/10.1264/jsme2.ME23089","url":null,"abstract":"<p><p>Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 5","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of Biogenic Manganese Oxide Nodules on Hyphae of a New Fungal Isolate of Periconia That Immobilizes Aqueous Copper. 可固定水溶液中的铜的一种新的 Periconia 真菌分离菌丝上生物氧化锰结节的形成。
IF 2.1 4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-01-01 DOI: 10.1264/jsme2.ME23102
Shihori Tsushima, Yuma Nishi, Ryo Suzuki, Masaru Tachibana, Robert A Kanaly, Jiro F Mori
{"title":"Formation of Biogenic Manganese Oxide Nodules on Hyphae of a New Fungal Isolate of Periconia That Immobilizes Aqueous Copper.","authors":"Shihori Tsushima, Yuma Nishi, Ryo Suzuki, Masaru Tachibana, Robert A Kanaly, Jiro F Mori","doi":"10.1264/jsme2.ME23102","DOIUrl":"10.1264/jsme2.ME23102","url":null,"abstract":"<p><p>Mn(II)-oxidizing microorganisms are considered to play significant roles in the natural geochemical cycles of Mn and other heavy metals because the insoluble biogenic Mn oxides (BMOs) that are produced by these microorganisms adsorb other dissolved heavy metals and immobilize them as precipitates. In the present study, a new Mn(II)-oxidizing fungal strain belonging to the ascomycete genus Periconia, a well-studied plant-associating fungal genus with Mn(II)-oxidizing activity that has not yet been exami-ned in detail, was isolated from natural groundwater outflow sediment. This isolate, named strain TS-2, was confirmed to oxidize dissolved Mn(II) and produce insoluble BMOs that formed characteristic, separately-located nodules on their hyphae while leaving major areas of the hyphae free from encrustation. These BMO nodules also adsorbed and immobilized dissolved Cu(II), a model analyte of heavy metals, as evidenced by elemental mapping ana-lyses of fungal hyphae-BMO assemblages using a scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX). Analyses of functional genes within the whole genome of strain TS-2 further revealed the presence of multiple genes predicted to encode laccases/multicopper oxidases that were potentially responsible for Mn(II) oxidation by this strain. The formation of BMO nodules may have functioned to prevent the complete encrustation of fungal hyphae, thereby enabling the control of heavy metal concentrations in their local microenvironments while maintaining hyphal functionality. The present results will expand our knowledge of the physiological and morphological traits of Mn(II)-oxidizing Periconia, which may affect the natural cycle of heavy metals through their immobilization.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root Colonization by Trichoderma atroviride Triggers Induced Systemic Resistance Primarily Independent of the Chitin-mediated Signaling Pathway in Arabidopsis. 拟南芥中atroviride木霉定殖诱导的系统性抗性主要独立于几丁质介导的信号通路。
IF 2.1 4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-01-01 DOI: 10.1264/jsme2.ME24038
Ayae Sakai, Hisako Yamagata, Keigo Naito, Mai Yoshioka, Takaya Tominaga, Shinsuke Ifuku, Hironori Kaminaka
{"title":"Root Colonization by Trichoderma atroviride Triggers Induced Systemic Resistance Primarily Independent of the Chitin-mediated Signaling Pathway in Arabidopsis.","authors":"Ayae Sakai, Hisako Yamagata, Keigo Naito, Mai Yoshioka, Takaya Tominaga, Shinsuke Ifuku, Hironori Kaminaka","doi":"10.1264/jsme2.ME24038","DOIUrl":"https://doi.org/10.1264/jsme2.ME24038","url":null,"abstract":"<p><p>Beneficial root endophytic fungi induce systemic responses, growth promotion, and induced systemic resistance (ISR) in colonized host plants. The soil application of chitin, a main component of fungal cell walls, also systemically induces disease resistance. Therefore, chitin recognition and its downstream signaling pathway mediate ISR triggered by beneficial fungi colonizing the root. The present study compared systemic disease resistance and transcriptional responses induced by Trichoderma, a representative beneficial root endophytic fungus, and chitin in Arabidopsis. Significant plant growth promotion was observed under root colonization by the three beneficial fungi tested: Trichoderma atroviride, Serendipita indica, and S. vermifera. Only T. atroviride and S. indica triggered ISR against the necrotrophic fungal pathogen Alternaria brassicicola. Induced systemic resistance triggered by T. atroviride was compromised in the chitin-receptor mutant, whereas systemic resistance caused by the soil application of chitin was not. A transcriptome ana-lysis demonstrated that chitin-regulated genes were mostly shared with those regulated by T. atroviride; however, many of the latter were specific. The commonly enriched gene ontologies for these genes indicated that the T. atroviride inoculation and chitin application systemically controlled similar transcriptional responses, mainly associated with cell wall functions. Therefore, Trichoderma may trigger ISR primarily independent of the chitin-mediated signaling pathway; however, chitin and Trichoderma may systemically induce similar cellular functions aboveground.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DiGAlign: Versatile and Interactive Visualization of Sequence Alignment for Comparative Genomics. DiGAlign:用于比较基因组学的多功能交互式可视化序列比对。
IF 2.2 4区 环境科学与生态学
Microbes and Environments Pub Date : 2024-01-01 DOI: 10.1264/jsme2.ME23061
Yosuke Nishimura, Kohei Yamada, Yusuke Okazaki, Hiroyuki Ogata
{"title":"DiGAlign: Versatile and Interactive Visualization of Sequence Alignment for Comparative Genomics.","authors":"Yosuke Nishimura, Kohei Yamada, Yusuke Okazaki, Hiroyuki Ogata","doi":"10.1264/jsme2.ME23061","DOIUrl":"10.1264/jsme2.ME23061","url":null,"abstract":"<p><p>With the explosion of available genomic information, comparative genomics has become a central approach to understanding microbial ecology and evolution. We developed DiGAlign (https://www.genome.jp/digalign/), a web server that provides versatile functionality for comparative genomics with an intuitive interface. It allows the user to perform the highly customizable visualization of a synteny map by simply uploading nucleotide sequences of interest, ranging from a specific region to the whole genome landscape of microorganisms and viruses. DiGAlign will serve a wide range of biological researchers, particularly experimental biologists, with multifaceted features that allow the rapid characterization of genomic sequences of interest and the generation of a publication-ready figure.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信