{"title":"亚阿尔卑斯湖中尼特罗加菌的垂直分布和季节模式","authors":"Albin Alfreider, Manuel Harringer","doi":"10.1264/jsme2.ME23086","DOIUrl":null,"url":null,"abstract":"<p><p>The nitrite oxidizing bacterial genus Ca. Nitrotoga was only recently discovered to be widespread in freshwater systems; however, limited information is currently available on the environmental factors and seasonal effects that influence its distribution in lakes. In a one-year study in a dimictic lake, based on monthly sampling along a vertical profile, the droplet digital PCR quantification of Ca. Nitrotoga showed a strong spatio-temporal patchiness. A correlation ana-lysis with environmental parameters revealed that the abundance of Ca. Nitrotoga correlated with dissolved oxygen and ammonium, suggesting that the upper hypolimnion of the lake is the preferred habitat.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220445/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vertical Distribution and Seasonal Patterns of Candidatus Nitrotoga in a Sub-Alpine Lake.\",\"authors\":\"Albin Alfreider, Manuel Harringer\",\"doi\":\"10.1264/jsme2.ME23086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nitrite oxidizing bacterial genus Ca. Nitrotoga was only recently discovered to be widespread in freshwater systems; however, limited information is currently available on the environmental factors and seasonal effects that influence its distribution in lakes. In a one-year study in a dimictic lake, based on monthly sampling along a vertical profile, the droplet digital PCR quantification of Ca. Nitrotoga showed a strong spatio-temporal patchiness. A correlation ana-lysis with environmental parameters revealed that the abundance of Ca. Nitrotoga correlated with dissolved oxygen and ammonium, suggesting that the upper hypolimnion of the lake is the preferred habitat.</p>\",\"PeriodicalId\":18482,\"journal\":{\"name\":\"Microbes and Environments\",\"volume\":\"39 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220445/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1264/jsme2.ME23086\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME23086","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Vertical Distribution and Seasonal Patterns of Candidatus Nitrotoga in a Sub-Alpine Lake.
The nitrite oxidizing bacterial genus Ca. Nitrotoga was only recently discovered to be widespread in freshwater systems; however, limited information is currently available on the environmental factors and seasonal effects that influence its distribution in lakes. In a one-year study in a dimictic lake, based on monthly sampling along a vertical profile, the droplet digital PCR quantification of Ca. Nitrotoga showed a strong spatio-temporal patchiness. A correlation ana-lysis with environmental parameters revealed that the abundance of Ca. Nitrotoga correlated with dissolved oxygen and ammonium, suggesting that the upper hypolimnion of the lake is the preferred habitat.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.