Mathematika最新文献

筛选
英文 中文
Sums of distances on graphs and embeddings into Euclidean space 图上的距离和和在欧氏空间中的嵌入
IF 0.8 3区 数学
Mathematika Pub Date : 2023-04-18 DOI: 10.1112/mtk.12198
Stefan Steinerberger
{"title":"Sums of distances on graphs and embeddings into Euclidean space","authors":"Stefan Steinerberger","doi":"10.1112/mtk.12198","DOIUrl":"10.1112/mtk.12198","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>=</mo>\u0000 <mo>(</mo>\u0000 <mi>V</mi>\u0000 <mo>,</mo>\u0000 <mi>E</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$G=(V,E)$</annotation>\u0000 </semantics></math> be a finite, connected graph. We consider a greedy selection of vertices: given a list of vertices <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>x</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>⋯</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>x</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$x_1, dots , x_k$</annotation>\u0000 </semantics></math>, take <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>x</mi>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$x_{k+1}$</annotation>\u0000 </semantics></math> to be any vertex maximizing the sum of distances to the vertices already chosen and iterate, keep adding the “most remote” vertex. The frequency with which the vertices of the graph appear in this sequence converges to a set of probability measures with nice properties. The support of these measures is, generically, given by a rather small number of vertices <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>≪</mo>\u0000 <mo>|</mo>\u0000 <mi>V</mi>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <annotation>$m ll |V|$</annotation>\u0000 </semantics></math>. We prove that this suggests that the graph <i>G</i> is, in a suitable sense, “<i>m</i>-dimensional” by exhibiting an explicit 1-Lipschitz embedding <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ϕ</mi>\u0000 <mo>:</mo>\u0000 <mi>V</mi>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>ℓ</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>m</mi>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$phi : V rightarrow ell ^1(mathbb {R}^m)$</annotation>\u0000 </semantics></math> with good properties.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44399735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The K ℵ 0 $K^{aleph _0}$ game: Vertex colouring Kℵ0$K^{aleph _0}$游戏:顶点着色
IF 0.8 3区 数学
Mathematika Pub Date : 2023-04-14 DOI: 10.1112/mtk.12196
Nathan Bowler, Marit Emde, Florian Gut
{"title":"The \u0000 \u0000 \u0000 K\u0000 \u0000 ℵ\u0000 0\u0000 \u0000 \u0000 $K^{aleph _0}$\u0000 game: Vertex colouring","authors":"Nathan Bowler,&nbsp;Marit Emde,&nbsp;Florian Gut","doi":"10.1112/mtk.12196","DOIUrl":"10.1112/mtk.12196","url":null,"abstract":"<p>We investigate games played between Maker and Breaker on an infinite complete graph whose vertices are coloured with colours from a given set, each colour appearing infinitely often. The players alternately claim edges, Maker's aim being to claim all edges of a sufficiently colourful infinite complete subgraph and Breaker's aim being to prevent this. We show that if there are only finitely many colours, then Maker can obtain a complete subgraph in which all colours appear infinitely often, but that Breaker can prevent this if there are infinitely many colours. Even when there are infinitely many colours, we show that Maker can obtain a complete subgraph in which infinitely many of the colours each appear infinitely often.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44538270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the error term in a mixed moment of L-functions 关于L函数混合矩中的误差项
IF 0.8 3区 数学
Mathematika Pub Date : 2023-04-11 DOI: 10.1112/mtk.12199
Rizwanur Khan, Zeyuan Zhang
{"title":"On the error term in a mixed moment of L-functions","authors":"Rizwanur Khan,&nbsp;Zeyuan Zhang","doi":"10.1112/mtk.12199","DOIUrl":"10.1112/mtk.12199","url":null,"abstract":"<p>There has recently been some interest in optimizing the error term in the asymptotic for the fourth moment of Dirichlet <i>L</i>-functions and a closely related mixed moment of <i>L</i>-functions involving automorphic <i>L</i>-functions twisted by Dirichlet characters. We obtain an improvement for the error term of the latter.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45908702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the number of vertices of projective polytopes 关于投影多面体的顶点数
IF 0.8 3区 数学
Mathematika Pub Date : 2023-03-23 DOI: 10.1112/mtk.12193
Natalia García-Colín, Luis Pedro Montejano, Jorge Luis Ramírez Alfonsín
{"title":"On the number of vertices of projective polytopes","authors":"Natalia García-Colín,&nbsp;Luis Pedro Montejano,&nbsp;Jorge Luis Ramírez Alfonsín","doi":"10.1112/mtk.12193","DOIUrl":"10.1112/mtk.12193","url":null,"abstract":"<p>Let <i>X</i> be a set of <i>n</i> points in <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^d$</annotation>\u0000 </semantics></math> in general position. What is the maximum number of vertices that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>conv</mi>\u0000 <mo>(</mo>\u0000 <mi>T</mi>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathsf {conv}(T(X))$</annotation>\u0000 </semantics></math> can have among all the possible permissible projective transformations <i>T</i>? In this paper, we investigate this and other related questions. After presenting several upper bounds, obtained by using oriented matroid machinery, we study a closely related problem (via Gale transforms) concerning the maximal number of minimal Radon partitions of a set of points. The latter led us to a result supporting a positive answer to a question of Pach and Szegedy asking whether <i>balanced</i> 2-colorings of points in the plane maximize the number of induced multicolored Radon partitions. We also discuss a related problem concerning the size of topes in arrangements of hyperplanes as well as a tolerance-type problem of finite sets.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12193","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41478429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mean values of the logarithmic derivative of the Riemann zeta-function near the critical line 临界线附近黎曼ζ函数对数导数的平均值
IF 0.8 3区 数学
Mathematika Pub Date : 2023-03-23 DOI: 10.1112/mtk.12194
Fan Ge
{"title":"Mean values of the logarithmic derivative of the Riemann zeta-function near the critical line","authors":"Fan Ge","doi":"10.1112/mtk.12194","DOIUrl":"10.1112/mtk.12194","url":null,"abstract":"<p>Assuming the Riemann hypothesis and a hypothesis on small gaps between zeta zeros (see equation (ES 2<i>K</i>) below for a precise definition), we prove a conjecture of Bailey, Bettin, Blower, Conrey, Prokhorov, Rubinstein and Snaith [J. Math. Phys. <b>60</b> (2019), no. 8, 083509], which states that for any positive integer <i>K</i> and real number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$a&gt;0$</annotation>\u0000 </semantics></math>,\u0000\u0000 </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46249620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Isoperimetric problems for zonotopes 带状疱疹的等周问题
IF 0.8 3区 数学
Mathematika Pub Date : 2023-03-15 DOI: 10.1112/mtk.12191
Antal Joós, Zsolt Lángi
{"title":"Isoperimetric problems for zonotopes","authors":"Antal Joós,&nbsp;Zsolt Lángi","doi":"10.1112/mtk.12191","DOIUrl":"10.1112/mtk.12191","url":null,"abstract":"<p>Shephard (Canad. J. Math. <b>26</b> (1974), 302–321) proved a decomposition theorem for zonotopes yielding a simple formula for their volume. In this note, we prove a generalization of this theorem yielding similar formulae for their intrinsic volumes. We use this result to investigate geometric extremum problems for zonotopes generated by a given number of segments. In particular, we solve isoperimetric problems for <i>d</i>-dimensional zonotopes generated by <i>d</i> or <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$d+1$</annotation>\u0000 </semantics></math> segments, and give asymptotic estimates for the solutions of similar problems for zonotopes generated by sufficiently many segments. In addition, we present applications of our results to the ℓ<sub>1</sub> polarization problem on the unit sphere and to a vector-valued Maclaurin inequality conjectured by Brazitikos and McIntyre in 2021.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41834124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On a geometric combination of functions related to Prékopa–Leindler inequality 关于pracoppa - leindler不等式的函数的几何组合
IF 0.8 3区 数学
Mathematika Pub Date : 2023-03-07 DOI: 10.1112/mtk.12192
Graziano Crasta, Ilaria Fragalà
{"title":"On a geometric combination of functions related to Prékopa–Leindler inequality","authors":"Graziano Crasta,&nbsp;Ilaria Fragalà","doi":"10.1112/mtk.12192","DOIUrl":"10.1112/mtk.12192","url":null,"abstract":"<p>We introduce a new operation between nonnegative integrable functions on <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^n$</annotation>\u0000 </semantics></math>, that we call <i>geometric combination</i>; it is obtained via a mass transportation approach, playing with inverse distribution functions. The main feature of this operation is that the Lebesgue integral of the geometric combination equals the geometric mean of the two separate integrals; as a natural consequence, we derive a new functional inequality of Prékopa–Leindler type. When applied to the characteristic functions of two measurable sets, their geometric combination provides a set whose volume equals the geometric mean of the two separate volumes. In the framework of convex bodies, by comparing the geometric combination with the 0-sum, we get an alternative proof of the log-Brunn–Minkowski inequality for unconditional convex bodies and for convex bodies with <i>n</i> symmetries.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46898849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Unions of lines in R n $mathbb {R}^n$ Rn$mathbb {R}^n$中的行并集
IF 0.8 3区 数学
Mathematika Pub Date : 2023-02-17 DOI: 10.1112/mtk.12190
Joshua Zahl
{"title":"Unions of lines in \u0000 \u0000 \u0000 R\u0000 n\u0000 \u0000 $mathbb {R}^n$","authors":"Joshua Zahl","doi":"10.1112/mtk.12190","DOIUrl":"10.1112/mtk.12190","url":null,"abstract":"<p>We prove a conjecture of D. Oberlin on the dimension of unions of lines in <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^n$</annotation>\u0000 </semantics></math>. If <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 1$</annotation>\u0000 </semantics></math> is an integer, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>⩽</mo>\u0000 <mi>β</mi>\u0000 <mo>⩽</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$0leqslant beta leqslant 1$</annotation>\u0000 </semantics></math>, and <i>L</i> is a set of lines in <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^n$</annotation>\u0000 </semantics></math> with Hausdorff dimension at least <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>(</mo>\u0000 <mi>d</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 <mo>+</mo>\u0000 <mi>β</mi>\u0000 </mrow>\u0000 <annotation>$2(d-1)+beta$</annotation>\u0000 </semantics></math>, then the union of the lines in <i>L</i> has Hausdorff dimension at least <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>+</mo>\u0000 <mi>β</mi>\u0000 </mrow>\u0000 <annotation>$d + beta$</annotation>\u0000 </semantics></math>. Our proof combines a refined version of the multilinear Kakeya theorem by Carbery and Valdimarsson with the multilinear → linear argument of Bourgain and Guth.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12190","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44163916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Affine subspace concentration conditions for centered polytopes 中心多面体的仿射子空间集中条件
IF 0.8 3区 数学
Mathematika Pub Date : 2023-02-13 DOI: 10.1112/mtk.12189
Ansgar Freyer, Martin Henk, Christian Kipp
{"title":"Affine subspace concentration conditions for centered polytopes","authors":"Ansgar Freyer,&nbsp;Martin Henk,&nbsp;Christian Kipp","doi":"10.1112/mtk.12189","DOIUrl":"10.1112/mtk.12189","url":null,"abstract":"<p>Recently, K.-Y. Wu introduced affine subspace concentration conditions for the cone volumes of polytopes and proved that the cone volumes of centered, reflexive, smooth lattice polytopes satisfy these conditions. We extend the result to arbitrary centered polytopes.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45466250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On Borsuk–Ulam theorems and convex sets 关于Borsuk–Ulam定理和凸集
IF 0.8 3区 数学
Mathematika Pub Date : 2023-02-11 DOI: 10.1112/mtk.12186
M. C. Crabb
{"title":"On Borsuk–Ulam theorems and convex sets","authors":"M. C. Crabb","doi":"10.1112/mtk.12186","DOIUrl":"10.1112/mtk.12186","url":null,"abstract":"<p>The Intermediate Value Theorem is used to give an elementary proof of a Borsuk–Ulam theorem of Adams, Bush and Frick [1] that if <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>:</mo>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>k</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$f: S^1rightarrow {mathbb {R}}^{2k+1}$</annotation>\u0000 </semantics></math> is a continuous function on the unit circle <i>S</i><sup>1</sup> in <math>\u0000 <semantics>\u0000 <mi>C</mi>\u0000 <annotation>${mathbb {C}}$</annotation>\u0000 </semantics></math> such that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>(</mo>\u0000 <mo>−</mo>\u0000 <mi>z</mi>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mo>−</mo>\u0000 <mi>f</mi>\u0000 <mo>(</mo>\u0000 <mi>z</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$f(-z)=-f(z)$</annotation>\u0000 </semantics></math> for all <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>z</mi>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$zin S^1$</annotation>\u0000 </semantics></math>, then there is a finite subset <i>X</i> of <i>S</i><sup>1</sup> of diameter at most <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>π</mi>\u0000 <mo>−</mo>\u0000 <mi>π</mi>\u0000 <mo>/</mo>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mi>k</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$pi -pi /(2k+1)$</annotation>\u0000 </semantics></math> (in the standard metric in which the circle has circumference of length 2π) such the convex hull of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$f(X)$</annotation>\u0000 </semantics></math> contains <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 ","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41522426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信