MathematikaPub Date : 2023-10-26DOI: 10.1112/mtk.12230
Andrew Scoones
{"title":"On the \u0000 \u0000 \u0000 a\u0000 b\u0000 c\u0000 \u0000 $abc$\u0000 conjecture in algebraic number fields","authors":"Andrew Scoones","doi":"10.1112/mtk.12230","DOIUrl":"https://doi.org/10.1112/mtk.12230","url":null,"abstract":"<p>In this paper, we prove a weak form of the <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mi>b</mi>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$abc$</annotation>\u0000 </semantics></math> conjecture generalised to algebraic number fields. Given integers satisfying <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>+</mo>\u0000 <mi>b</mi>\u0000 <mo>=</mo>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$a+b=c$</annotation>\u0000 </semantics></math>, Stewart and Yu were able to give an exponential bound in terms of the radical over the integers (Stewart and Yu [Math. Ann. <b>291</b> (1991), 225–230], Stewart and Yu [Duke Math. J. <b>108</b> (2001), no. 1, 169–181]), whereas Győry was able to give an exponential bound in the algebraic number field case for the projective height <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mi>K</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>a</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>b</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>c</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H_{K}(a,,b,,c)$</annotation>\u0000 </semantics></math> in terms of the radical for algebraic numbers (Győry [Acta Arith. <b>133</b> (2008), 281–295]). We generalise Stewart and Yu's method to give an improvement on Győry's bound for algebraic integers over the Hilbert Class Field of the initial number field <i>K</i>. Given algebraic integers <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>b</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$a,,b,,c$</annotation>\u0000 </semantics></math> in a number field <i>K</i> satisfying <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>+</mo>\u0000 <mi>b</mi>\u0000 <mo>=</mo>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$a+b=c$</annotation>\u0000 </semantics></math>, we give an upper bound for the logarithm of the projective height <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12230","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68181298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}