单边移动的马尔科夫-拉格朗日谱

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-05-07 DOI:10.1112/mtk.12250
Hajime Kaneko, Wolfgang Steiner
{"title":"单边移动的马尔科夫-拉格朗日谱","authors":"Hajime Kaneko,&nbsp;Wolfgang Steiner","doi":"10.1112/mtk.12250","DOIUrl":null,"url":null,"abstract":"<p>For the Lagrange spectrum and other applications, we determine the smallest accumulation point of binary sequences that are maximal in their shift orbits. This problem is trivial for the lexicographic order, and its solution is the fixed point of a substitution for the alternating lexicographic order. For orders defined by cylinders, we show that the solutions are <span></span><math></math>-adic sequences, where <span></span><math></math> is a certain infinite set of substitutions that contains Sturmian morphisms. We also consider a similar problem for symmetric ternary shifts, which is applicable to the multiplicative version of the Markoff–Lagrange spectrum.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12250","citationCount":"0","resultStr":"{\"title\":\"Markoff–Lagrange spectrum of one-sided shifts\",\"authors\":\"Hajime Kaneko,&nbsp;Wolfgang Steiner\",\"doi\":\"10.1112/mtk.12250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the Lagrange spectrum and other applications, we determine the smallest accumulation point of binary sequences that are maximal in their shift orbits. This problem is trivial for the lexicographic order, and its solution is the fixed point of a substitution for the alternating lexicographic order. For orders defined by cylinders, we show that the solutions are <span></span><math></math>-adic sequences, where <span></span><math></math> is a certain infinite set of substitutions that contains Sturmian morphisms. We also consider a similar problem for symmetric ternary shifts, which is applicable to the multiplicative version of the Markoff–Lagrange spectrum.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12250\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12250\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12250","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

针对拉格朗日谱和其他应用,我们确定了在移位轨道上最大的二元序列的最小堆积点。这个问题对于词法阶来说是微不足道的,它的解就是交替词法阶的置换定点。对于由圆柱体定义的阶,我们证明解是-adic 序列,其中是包含 Sturmian 形态的某个无限替代集。我们还考虑了对称三元移动的类似问题,它适用于乘法版本的马尔科夫-拉格朗日谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markoff–Lagrange spectrum of one-sided shifts

For the Lagrange spectrum and other applications, we determine the smallest accumulation point of binary sequences that are maximal in their shift orbits. This problem is trivial for the lexicographic order, and its solution is the fixed point of a substitution for the alternating lexicographic order. For orders defined by cylinders, we show that the solutions are -adic sequences, where is a certain infinite set of substitutions that contains Sturmian morphisms. We also consider a similar problem for symmetric ternary shifts, which is applicable to the multiplicative version of the Markoff–Lagrange spectrum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信