Large deviations of the argument of the Riemann zeta function

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-05-07 DOI:10.1112/mtk.12251
Alexander Dobner
{"title":"Large deviations of the argument of the Riemann zeta function","authors":"Alexander Dobner","doi":"10.1112/mtk.12251","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math></math>. We prove an unconditional lower bound on the measure of the sets <span></span><math></math> for <span></span><math></math>. For <span></span><math></math>, our bound has a Gaussian shape with variance proportional to <span></span><math></math>. At the endpoint, <span></span><math></math>, our result implies the best known <span></span><math></math>-theorem for <span></span><math></math> that is due to Tsang. We also explain how the method breaks down for <span></span><math></math> given our current knowledge about the zeros of the zeta function. Conditionally on the Riemann hypothesis, we extend our results to the range <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12251","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12251","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let . We prove an unconditional lower bound on the measure of the sets for . For , our bound has a Gaussian shape with variance proportional to . At the endpoint, , our result implies the best known -theorem for that is due to Tsang. We also explain how the method breaks down for given our current knowledge about the zeros of the zeta function. Conditionally on the Riemann hypothesis, we extend our results to the range .

黎曼zeta函数参数的大偏差
假设...,我们证明了...集合度量的无条件下限。对于 ,我们的下界具有高斯形状,方差与 .在终点, , 我们的结果隐含了曾国藩提出的已知最优定理.我们还解释了在目前已知的 zeta 函数零点的情况下,该方法是如何分解的。在黎曼假设的条件下,我们将结果扩展到 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信