Triangular maximal operators on locally finite trees

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-05-15 DOI:10.1112/mtk.12253
Stefano Meda, Federico Santagati
{"title":"Triangular maximal operators on locally finite trees","authors":"Stefano Meda,&nbsp;Federico Santagati","doi":"10.1112/mtk.12253","DOIUrl":null,"url":null,"abstract":"<p>We introduce the centred and the uncentred triangular maximal operators <span></span><math></math> and <span></span><math></math>, respectively, on any locally finite tree in which each vertex has at least three neighbours. We prove that both <span></span><math></math> and <span></span><math></math> are bounded on <span></span><math></math> for every <span></span><math></math> in <span></span><math></math>, that <span></span><math></math> is also bounded on <span></span><math></math>, and that <span></span><math></math> is not of weak type (1, 1) on homogeneous trees. Our proof of the <span></span><math></math> boundedness of <span></span><math></math> hinges on the geometric approach of Córdoba and Fefferman. We also establish <span></span><math></math> bounds for some related maximal operators. Our results are in sharp contrast with the fact that the centred and the uncentred Hardy–Littlewood maximal operators (on balls) may be unbounded on <span></span><math></math> for every <span></span><math></math> even on some trees where the number of neighbours is uniformly bounded.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12253","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12253","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the centred and the uncentred triangular maximal operators  and , respectively, on any locally finite tree in which each vertex has at least three neighbours. We prove that both and are bounded on  for every in , that is also bounded on , and that  is not of weak type (1, 1) on homogeneous trees. Our proof of the  boundedness of  hinges on the geometric approach of Córdoba and Fefferman. We also establish bounds for some related maximal operators. Our results are in sharp contrast with the fact that the centred and the uncentred Hardy–Littlewood maximal operators (on balls) may be unbounded on  for every even on some trees where the number of neighbours is uniformly bounded.

局部有限树上的三角最大算子
我们分别在每个顶点至少有三个邻居的任何局部有限树上引入有中心三角最大算子 和 无中心三角最大算子 。我们证明,对于每一个在 、 、 上也有界且在同质树上不属于弱类型(1,1)的算子, 和 都是有界的。我们对 的有界性的证明依赖于 Córdoba 和 Fefferman 的几何方法。我们还为一些相关的最大算子建立了边界。我们的结果与有中心和无中心哈代-利特尔伍德(Hardy-Littlewood)最大算子(在球上)在邻域数均匀有界的某些树上可能是无界的这一事实形成了鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信