Mathematika最新文献

筛选
英文 中文
On polynomials with only rational roots 关于只有有理根的多项式
IF 0.8 3区 数学
Mathematika Pub Date : 2023-06-09 DOI: 10.1112/mtk.12209
Lajos Hajdu, Robert Tijdeman, Nóra Varga
{"title":"On polynomials with only rational roots","authors":"Lajos Hajdu,&nbsp;Robert Tijdeman,&nbsp;Nóra Varga","doi":"10.1112/mtk.12209","DOIUrl":"10.1112/mtk.12209","url":null,"abstract":"<p>In this paper, we study upper bounds for the degrees of polynomials with only rational roots. First, we assume that the coefficients are bounded. In the second theorem, we suppose that the primes 2 and 3 do not divide any coefficient. The third theorem concerns the case that all coefficients are composed of primes from a fixed finite set.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12209","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49035118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pretentious proof of Linnik's estimate for primes in arithmetic progressions 对算术数列中素数的林尼克估计的自命不凡的证明
IF 0.8 3区 数学
Mathematika Pub Date : 2023-06-09 DOI: 10.1112/mtk.12211
Stelios Sachpazis
{"title":"A pretentious proof of Linnik's estimate for primes in arithmetic progressions","authors":"Stelios Sachpazis","doi":"10.1112/mtk.12211","DOIUrl":"10.1112/mtk.12211","url":null,"abstract":"<p>In the present paper, the author adopts a pretentious approach and recovers an estimate obtained by Linnik for the sums of the von Mangoldt function Λ on arithmetic progressions. It is the analogue of an estimate that Linnik established in his attempt to prove his celebrated theorem concerning the size of the smallest prime number of an arithmetic progression. Our work builds on ideas coming from the pretentious large sieve of Granville, Harper, and Soundararajan and it also borrows insights from the treatment of Koukoulopoulos on multiplicative functions with small averages.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44477461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropic exercises around the Kneser–Poulsen conjecture Kneer–Poulsen猜想的熵练习
IF 0.8 3区 数学
Mathematika Pub Date : 2023-06-06 DOI: 10.1112/mtk.12210
Gautam Aishwarya, Irfan Alam, Dongbin Li, Sergii Myroshnychenko, Oscar Zatarain-Vera
{"title":"Entropic exercises around the Kneser–Poulsen conjecture","authors":"Gautam Aishwarya,&nbsp;Irfan Alam,&nbsp;Dongbin Li,&nbsp;Sergii Myroshnychenko,&nbsp;Oscar Zatarain-Vera","doi":"10.1112/mtk.12210","DOIUrl":"10.1112/mtk.12210","url":null,"abstract":"<p>We develop an information-theoretic approach to study the Kneser–Poulsen conjecture in discrete geometry. This leads us to a broad question regarding whether Rényi entropies of independent sums decrease when one of the summands is contracted by a 1-Lipschitz map. We answer this question affirmatively in various cases.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12210","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49598006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimension formulas for Siegel modular forms of level 4 四阶Siegel模形式的维数公式
IF 0.8 3区 数学
Mathematika Pub Date : 2023-05-31 DOI: 10.1112/mtk.12207
Manami Roy, Ralf Schmidt, Shaoyun Yi
{"title":"Dimension formulas for Siegel modular forms of level 4","authors":"Manami Roy,&nbsp;Ralf Schmidt,&nbsp;Shaoyun Yi","doi":"10.1112/mtk.12207","DOIUrl":"10.1112/mtk.12207","url":null,"abstract":"<p>We prove several dimension formulas for spaces of scalar-valued Siegel modular forms of degree 2 with respect to certain congruence subgroups of level 4. In case of cusp forms, all modular forms considered originate from cuspidal automorphic representations of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>GSp</mi>\u0000 <mo>(</mo>\u0000 <mn>4</mn>\u0000 <mo>,</mo>\u0000 <mi>A</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>${rm GSp}(4,{mathbb {A}})$</annotation>\u0000 </semantics></math> whose local component at <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$p=2$</annotation>\u0000 </semantics></math> admits nonzero fixed vectors under the principal congruence subgroup of level 2. Using known dimension formulas combined with dimensions of spaces of fixed vectors in local representations at <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$p=2$</annotation>\u0000 </semantics></math>, we obtain formulas for the number of relevant automorphic representations. These, in turn, lead to new dimension formulas, in particular for Siegel modular forms with respect to the Klingen congruence subgroup of level 4.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44248425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A note on the zeros of the derivatives of Hardy's function Z ( t ) $Z(t)$ 关于哈代函数Z(t)$Z(t)$导数的零点的注释
IF 0.8 3区 数学
Mathematika Pub Date : 2023-05-30 DOI: 10.1112/mtk.12206
Hung M. Bui, Richard R. Hall
{"title":"A note on the zeros of the derivatives of Hardy's function \u0000 \u0000 \u0000 Z\u0000 (\u0000 t\u0000 )\u0000 \u0000 $Z(t)$","authors":"Hung M. Bui,&nbsp;Richard R. Hall","doi":"10.1112/mtk.12206","DOIUrl":"10.1112/mtk.12206","url":null,"abstract":"<p>Using the twisted fourth moment of the Riemann zeta-function, we study large gaps between consecutive zeros of the derivatives of Hardy's function <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Z</mi>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Z(t)$</annotation>\u0000 </semantics></math>, improving upon previous results of Conrey and Ghosh (J. Lond. Math. Soc. <b>32</b> (1985) 193–202), and of the second named author (Acta Arith. 111 (2004) 125–140). We also exhibit small distances between the zeros of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Z</mi>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Z(t)$</annotation>\u0000 </semantics></math> and the zeros of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mi>k</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$Z^{(2k)}(t)$</annotation>\u0000 </semantics></math> for every <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>∈</mo>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 <annotation>$kin mathbb {N}$</annotation>\u0000 </semantics></math>, in support of our numerical observation that the zeros of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$Z^{(k)}(t)$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>ℓ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12206","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46144088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Souplet–Zhang and Hamilton-type gradient estimates for non-linear elliptic equations on smooth metric measure spaces 光滑度量测度空间上非线性椭圆型方程的Souplet–Zhang和Hamilton型梯度估计
IF 0.8 3区 数学
Mathematika Pub Date : 2023-05-21 DOI: 10.1112/mtk.12208
Ali Taheri, Vahideh Vahidifar
{"title":"Souplet–Zhang and Hamilton-type gradient estimates for non-linear elliptic equations on smooth metric measure spaces","authors":"Ali Taheri,&nbsp;Vahideh Vahidifar","doi":"10.1112/mtk.12208","DOIUrl":"10.1112/mtk.12208","url":null,"abstract":"<p>In this article, we present new gradient estimates for positive solutions to a class of non-linear elliptic equations  involving the <i>f</i>-Laplacian on a smooth metric measure space. The gradient estimates of interest are of Souplet–Zhang and Hamilton types, respectively, and are established under natural lower bounds on the generalised Bakry–Émery Ricci curvature tensor. From these estimates, we derive amongst other things Harnack inequalities and general global constancy and Liouville-type theorems. The results and approach undertaken here provide a unified treatment and extend and improve various existing results in the literature. Some implications and applications are presented and discussed.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12208","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45790093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Distribution of Dirichlet L-functions Dirichlet L‐函数的分布
IF 0.8 3区 数学
Mathematika Pub Date : 2023-05-16 DOI: 10.1112/mtk.12205
Zikang Dong, Weijia Wang, Hao Zhang
{"title":"Distribution of Dirichlet L-functions","authors":"Zikang Dong,&nbsp;Weijia Wang,&nbsp;Hao Zhang","doi":"10.1112/mtk.12205","DOIUrl":"10.1112/mtk.12205","url":null,"abstract":"<p>In this article, we study the distribution of values of Dirichlet <i>L</i>-functions, the distribution of values of the random models for Dirichlet <i>L</i>-functions, and the discrepancy between these two kinds of distributions. For each question, we consider the cases of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mn>2</mn>\u0000 </mfrac>\u0000 <mo>&lt;</mo>\u0000 <mo>Re</mo>\u0000 <mi>s</mi>\u0000 <mo>&lt;</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$frac{1}{2}&lt;operatorname{Re}s&lt;1$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>Re</mo>\u0000 <mi>s</mi>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$operatorname{Re}s=1$</annotation>\u0000 </semantics></math> separately.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41572702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The chromatic number of R n $mathbb {R}^{n}$ with multiple forbidden distances 具有多重禁止距离的Rn$mathbb{R}^{n}$的色数
IF 0.8 3区 数学
Mathematika Pub Date : 2023-05-09 DOI: 10.1112/mtk.12197
Eric Naslund
{"title":"The chromatic number of \u0000 \u0000 \u0000 R\u0000 n\u0000 \u0000 $mathbb {R}^{n}$\u0000 with multiple forbidden distances","authors":"Eric Naslund","doi":"10.1112/mtk.12197","DOIUrl":"https://doi.org/10.1112/mtk.12197","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mo>⊂</mo>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mrow>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$Asubset mathbb {R}_{&gt;0}$</annotation>\u0000 </semantics></math> be a finite set of distances, and let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>A</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$G_{A}(mathbb {R}^{n})$</annotation>\u0000 </semantics></math> be the graph with vertex set <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^{n}$</annotation>\u0000 </semantics></math> and edge set <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>,</mo>\u0000 <mi>y</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>:</mo>\u0000 <mspace></mspace>\u0000 <mo>∥</mo>\u0000 <mi>x</mi>\u0000 <mo>−</mo>\u0000 <mi>y</mi>\u0000 <msub>\u0000 <mo>∥</mo>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>∈</mo>\u0000 <mi>A</mi>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <annotation>$lbrace (x,y)in mathbb {R}^{n}: Vert x-yVert _{2}in Arbrace$</annotation>\u0000 </semantics></math>, and let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>χ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mi>A</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mi>χ</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>A</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 ","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50126756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curvatures for unions of WDC sets WDC集并集的曲率
IF 0.8 3区 数学
Mathematika Pub Date : 2023-05-04 DOI: 10.1112/mtk.12195
Dušan Pokorný
{"title":"Curvatures for unions of WDC sets","authors":"Dušan Pokorný","doi":"10.1112/mtk.12195","DOIUrl":"10.1112/mtk.12195","url":null,"abstract":"<p>We prove the existence of the curvature measures for a class of <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>U</mi>\u0000 <mi>WDC</mi>\u0000 </msub>\u0000 <annotation>${mathcal {U}}_{{rm WDC}}$</annotation>\u0000 </semantics></math> sets, which is a direct generalisation of <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>U</mi>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 <mspace></mspace>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>${mathcal {U}}_{rm {P! R}}$</annotation>\u0000 </semantics></math> sets studied by Rataj and Zähle. Moreover, we provide a simple characterisation of <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>U</mi>\u0000 <mi>WDC</mi>\u0000 </msub>\u0000 <annotation>${mathcal {U}}_{{rm WDC}}$</annotation>\u0000 </semantics></math> sets in <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^2$</annotation>\u0000 </semantics></math> and prove that in <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^2$</annotation>\u0000 </semantics></math>, the class of <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>U</mi>\u0000 <mi>WDC</mi>\u0000 </msub>\u0000 <annotation>${mathcal {U}}_{{rm WDC}}$</annotation>\u0000 </semantics></math> sets contains essentially all classes of sets known to admit curvature measures.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41703859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sums of triples in Abelian groups 阿贝尔群中三元组的和
IF 0.8 3区 数学
Mathematika Pub Date : 2023-04-18 DOI: 10.1112/mtk.12200
Ido Feldman, Assaf Rinot
{"title":"Sums of triples in Abelian groups","authors":"Ido Feldman,&nbsp;Assaf Rinot","doi":"10.1112/mtk.12200","DOIUrl":"10.1112/mtk.12200","url":null,"abstract":"<p>Motivated by a problem in additive Ramsey theory, we extend Todorčević's partitions of three-dimensional combinatorial cubes to handle additional three-dimensional objects. As a corollary, we get that if the continuum hypothesis fails, then for every Abelian group <i>G</i> of size ℵ<sub>2</sub>, there exists a coloring <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 <mo>:</mo>\u0000 <mi>G</mi>\u0000 <mo>→</mo>\u0000 <mi>Z</mi>\u0000 </mrow>\u0000 <annotation>$c:Grightarrow mathbb {Z}$</annotation>\u0000 </semantics></math> such that for every uncountable <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <mo>⊆</mo>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$Xsubseteq G$</annotation>\u0000 </semantics></math> and every integer <i>k</i>, there are three distinct elements <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>x</mi>\u0000 <mo>,</mo>\u0000 <mi>y</mi>\u0000 <mo>,</mo>\u0000 <mi>z</mi>\u0000 </mrow>\u0000 <annotation>$x,y,z$</annotation>\u0000 </semantics></math> of <i>X</i> such that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>+</mo>\u0000 <mi>y</mi>\u0000 <mo>+</mo>\u0000 <mi>z</mi>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation>$c(x+y+z)=k$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42772492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信