高阶离散和平稳等周不等式的统一方法

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-12-20 DOI:10.1112/mtk.12238
Kwok-Kun Kwong
{"title":"高阶离散和平稳等周不等式的统一方法","authors":"Kwok-Kun Kwong","doi":"10.1112/mtk.12238","DOIUrl":null,"url":null,"abstract":"<p>We present a unified approach to derive sharp isoperimetric-type inequalities of arbitrary high order. In particular, we obtain (i) sharp high-order discrete polygonal isoperimetric-type inequalities, (ii) sharp high-order isoperimetric-type inequalities for smooth curves with both upper and lower bounds for the isoperimetric deficit, and (iii) sharp higher order Chernoff-type inequalities involving a generalized width function and higher order locus of curvature centers. Our approach involves obtaining higher order discrete or smooth Wirtinger inequalities via Fourier analysis, by examining a family of linear operators. The key to our approach is identifying the appropriate linear operator and translating the analytic inequalities into geometric ones.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12238","citationCount":"0","resultStr":"{\"title\":\"A unified approach to higher order discrete and smooth isoperimetric inequalities\",\"authors\":\"Kwok-Kun Kwong\",\"doi\":\"10.1112/mtk.12238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a unified approach to derive sharp isoperimetric-type inequalities of arbitrary high order. In particular, we obtain (i) sharp high-order discrete polygonal isoperimetric-type inequalities, (ii) sharp high-order isoperimetric-type inequalities for smooth curves with both upper and lower bounds for the isoperimetric deficit, and (iii) sharp higher order Chernoff-type inequalities involving a generalized width function and higher order locus of curvature centers. Our approach involves obtaining higher order discrete or smooth Wirtinger inequalities via Fourier analysis, by examining a family of linear operators. The key to our approach is identifying the appropriate linear operator and translating the analytic inequalities into geometric ones.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12238\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12238\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12238","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种推导任意高阶尖锐等周不等式的统一方法。特别是,我们得到了 (i) 尖锐的高阶离散多边形等周不等式,(ii) 具有等周赤字上下限的光滑曲线的尖锐高阶等周不等式,以及 (iii) 涉及广义宽度函数和高阶曲率中心位置的尖锐高阶切尔诺夫型不等式。我们的方法是通过傅里叶分析,研究线性算子族,从而获得高阶离散或平滑的维廷格不等式。我们方法的关键在于确定适当的线性算子,并将解析不等式转化为几何不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified approach to higher order discrete and smooth isoperimetric inequalities

We present a unified approach to derive sharp isoperimetric-type inequalities of arbitrary high order. In particular, we obtain (i) sharp high-order discrete polygonal isoperimetric-type inequalities, (ii) sharp high-order isoperimetric-type inequalities for smooth curves with both upper and lower bounds for the isoperimetric deficit, and (iii) sharp higher order Chernoff-type inequalities involving a generalized width function and higher order locus of curvature centers. Our approach involves obtaining higher order discrete or smooth Wirtinger inequalities via Fourier analysis, by examining a family of linear operators. The key to our approach is identifying the appropriate linear operator and translating the analytic inequalities into geometric ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信