Methods in cell biologyPub Date : 2024-01-01Epub Date: 2023-10-19DOI: 10.1016/bs.mcb.2023.05.003
Tatiana A Mishchenko, Irina V Balalaeva, Victoria D Turubanova, Mariia O Saviuk, Natalia Yu Shilyagina, Olga Krysko, Maria V Vedunova, Dmitri V Krysko
{"title":"Gold standard assessment of immunogenic cell death induced by photodynamic therapy: From in vitro to tumor mouse models and anti-cancer vaccination strategies.","authors":"Tatiana A Mishchenko, Irina V Balalaeva, Victoria D Turubanova, Mariia O Saviuk, Natalia Yu Shilyagina, Olga Krysko, Maria V Vedunova, Dmitri V Krysko","doi":"10.1016/bs.mcb.2023.05.003","DOIUrl":"10.1016/bs.mcb.2023.05.003","url":null,"abstract":"<p><p>The discovery of the concept of immunogenic cell death (ICD) is a cornerstone in the development of novel anti-cancer immunotherapeutic approaches. Induction of the ICD pathway by specific anti-cancer therapeutic regimens can eliminate cancer cells by directly killing them during therapy and by activation of strong and specific anti-cancer immunity, leading to a long-lasting immunological memory that prevents cancer recurrence. ICD encompasses different forms of regulated cell death and can be triggered by many anti-cancer treatment modalities, including photodynamic therapy (PDT). PDT is a multistep procedure involving the accumulation of a light-sensitive dye known as a photosensitizer (PS) in tumor cells, followed by its activation by irradiation with a light of an appropriate wavelength. In the presence of molecular oxygen, the irradiated PS leads to the generation of cytotoxic reactive oxygen species, which can lead to ICD induction in the cancer cells. Here, we first describe in vitro methods to help optimize the PDT procedure for a specific PS. We also provide a collection of protocols and techniques for assessing ICD in vitro, including analysis of the emission of damage associated molecular patterns (DAMPs), efferocytosis, and the maturation and activation state of antigen presenting cells. Next, we describe in detail protocols for diverse tumor mouse models for assessing and characterizing ICD in vivo, such as murine tumor vaccination models. Finally, as an immunotherapeutic vaccine, we suggest using either PDT-induced dead cancer cells, preferably undergoing ICD, or dendritic cells loaded with lysates of PDT-induced cancer cells in a syngeneic orthotopic glioma model. Overall, this methodological article provides a quantitative, comprehensive set of validated tools that can be successfully used, with some adaptations, to identify, optimize and validate novel PSs in vitro and in vivo for the efficient induction of ICD during photodynamic treatment.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2024-01-01Epub Date: 2023-10-19DOI: 10.1016/bs.mcb.2023.04.004
Yi Song, Yingyu Liu, Qianhan Xu, Kam Tong Leung, Loucia Kit Ying Chan, Jacqueline Pui Wah Chung, Chi Chiu Wang, Xiaoyan Chen, Tao Zhang, Gene Chi Wai Man
{"title":"Isolation of myeloid-derived suppressor cells (MDSC) from endometriotic mice model and their immunomodulatory functions.","authors":"Yi Song, Yingyu Liu, Qianhan Xu, Kam Tong Leung, Loucia Kit Ying Chan, Jacqueline Pui Wah Chung, Chi Chiu Wang, Xiaoyan Chen, Tao Zhang, Gene Chi Wai Man","doi":"10.1016/bs.mcb.2023.04.004","DOIUrl":"10.1016/bs.mcb.2023.04.004","url":null,"abstract":"<p><p>Endometriosis is a chronic, painful disease whose etiology remains unknown. The development of novel therapies and diagnostic tools for endometriosis has been limited due in part to challenges in studying the disease. Recently, a few reports have shown that immunosuppressive cells, such as myeloid-derived suppressor cell (MDSC), may promote the progression of endometriosis. MDSCs are a heterogeneous group of myeloid cells with potent immunosuppressive and angiogenic properties. Here, in this chapter, we provide a detailed protocol to phenotype MDSC as well as to isolate and assess the functionality from the peritoneal cavity of a mouse model of surgically induced endometriosis. Importantly, the current mouse model has been widely used to study how the immune system, hormones, and environmental factors affect endometriosis as well as the effects of endometriosis on fertility and pain.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140329978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2024-01-01Epub Date: 2024-03-05DOI: 10.1016/bs.mcb.2024.02.003
Isabel Adrados, Lucía García-López, Mario Aguilar-Aragon, Eva Maranillo, María Domínguez
{"title":"Modeling childhood cancer in Drosophila melanogaster.","authors":"Isabel Adrados, Lucía García-López, Mario Aguilar-Aragon, Eva Maranillo, María Domínguez","doi":"10.1016/bs.mcb.2024.02.003","DOIUrl":"10.1016/bs.mcb.2024.02.003","url":null,"abstract":"<p><p>Childhood cancer is a major cause of death in developed countries, and while treatments and survival rates have improved, long-term side effects remain a challenge. The genetic component of pediatric tumors and their aggressive progression, makes the study of childhood cancer a complex area of research. Here, we introduce the fruit fly Drosophila melanogaster as study model. We emphasize its numerous advantages, including binary gene expression systems that enable precise control over the timing and location of gene expression manipulation, the capacity to combine multiple genes associated with cancer or the testing of human cancer variants within a live, intact animal. As an illustrative example, we focus on the Drosophila cancer paradigm which involves medically relevant genes, the Notch and PI3K/Akt signaling pathways. We describe how this cancer paradigm allows assessing two critical aspects of tumorigenesis during juvenile stages: (1) viability (do animals with particular cancer mutations survive into adulthood?), and (2) tumor burden (what percentage of animals bearing the cancer mutations actually develop cancer and what is the extent of the tumor?). We highlight the potential of Drosophila as a molecular therapeutic tool for drug screening and drug repurposing of medicines already approved to treat other diseases in children, thereby accelerating the potential translation of results into humans. This preclinical animal model sustains huge potential and is cost-effective. It allows screening of thousands of compounds and genes at a relatively low cost and human efforts, opening innovative venues to explore more effective and safer treatments of childhood cancer.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2024-01-01Epub Date: 2024-03-12DOI: 10.1016/bs.mcb.2024.02.039
María Clara González-Porcile, Ana Clara Muniz-Lagos, Marcela Alejandra Cucher, Gustavo Mourglia-Ettlin
{"title":"Mouse model of secondary cystic echinococcosis.","authors":"María Clara González-Porcile, Ana Clara Muniz-Lagos, Marcela Alejandra Cucher, Gustavo Mourglia-Ettlin","doi":"10.1016/bs.mcb.2024.02.039","DOIUrl":"10.1016/bs.mcb.2024.02.039","url":null,"abstract":"<p><p>Cystic echinococcosis (CE) is a parasitic zoonosis caused by the larval stage of the cestode Echinococcus granulosus sensu lato (s. l.), a genetic complex composed of five species: E. granulosus sensu stricto (s. s.), E. equinus, E. ortleppi, E. canadensis, and E. felidis. The parasite requires two mammalian hosts to complete its life cycle: a definitive host (mainly dogs) harboring the adult parasite in its intestines, and an intermediate host (mostly farm and wild ungulates) where hydatid cysts develop mainly in the liver and lungs. Humans are accidental intermediate hosts, being susceptible to either primary or secondary forms of CE; the first one due to the ingestion of oncospheres, and the second one because of the spillage of protoscoleces (PSC) contained within a primary cyst. Secondary CE is a serious medical problem, and can be modeled in immunocompetent mice (a non-natural intermediate host) through the intraperitoneal inoculation of viable PSC from E. granulosus s. l. This model is useful to study not only the immunobiology of CE, but also to test new chemotherapeutics or therapeutical protocols, to explore novel vaccine candidates, and to evaluate alternative diagnostic and/or follow-up tools. The mouse model of secondary CE involves two sequential stages: an early stage of parasite pre-encystment (PSC develop into hydatid cysts in the peritoneal cavity of mice), and a late or chronic stage of parasite post-encystment (already differentiated cysts slowly grow during the whole host lifespan). This model is a time-consuming infection, whose outcome depends on several factors like the parasite infective dose, the mouse strain, and the parasite species/genotype. Thus, such variables should always be adjusted according to the research objectives. Herein, the general materials and procedures needed to establish secondary CE in mice are described, as well as several useful tips and recommendations.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2024-01-01Epub Date: 2024-03-05DOI: 10.1016/bs.mcb.2024.02.006
David Repáraz, Noelia Casares, Andrea Fuentes, Flor Navarro
{"title":"Establishment of a murine hepatocellular carcinoma model by hydrodynamic injection and characterization of the immune tumor microenvironment.","authors":"David Repáraz, Noelia Casares, Andrea Fuentes, Flor Navarro","doi":"10.1016/bs.mcb.2024.02.006","DOIUrl":"10.1016/bs.mcb.2024.02.006","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the most prevalent malignant neoplasms. Current treatments for HCC, such as tyrosine kinase inhibitors, have limited efficacy, highlighting the urgent need for better therapies. Immunotherapies, including anti-programmed death receptor 1 (PD-1) and anti-Cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and more recently, the combination of anti-PD-L1 and anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, have shown efficacy against HCC, resulting in Food and Drug Administration (FDA) approval. However, these immunotherapies only show efficiency in a small proportion of patients, meaning there is a great need to improve and optimize treatments against HCC. Accurate animal models that mimic human HCC are necessary to help better understand the nature of these tumors, which in turn will allow the development and testing of new treatments. Existing pre-clinical HCC models can be divided into non-genetic and genetic models. Non-genetic models involve implanting human or murine HCC cell lines or inducing tumors using chemical compounds or dietary modifications. These models have limitations, including slow tumor development and a lack of resemblance to human HCC. Genetic models, on the other hand, manipulate gene expression to induce HCC in mice and provide a better understanding of the effects of specific genes on tumor development. One method commonly used to generate HCC is hydrodynamic tail vein injection (HTVI), which consists of the delivery of oncogenes directly to the liver, resulting in expression and subsequent hepatocyte transformation. Usually, Sleeping Beauty transposase-containing plasmids are used to achieve stable and long-term gene expression. Once the HCC tumor is generated, and a proper tumor microenvironment (TME) is established, it is important to study the immune compartment of the TME, which plays a crucial role in HCC development and response to treatment. Techniques like flow cytometry can be used to analyze the immune cell populations in HCC tumors and assess their impact on tumor development and survival in mice. In this article, we thoroughly describe an example of the methodology to successfully generate HCC murine models via HTVI, and we propose a way to characterize the immune TME by flow cytometry.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2024-01-01Epub Date: 2022-11-18DOI: 10.1016/bs.mcb.2022.10.008
Alexandra Dananberg, John Maciejowski
{"title":"Monitoring APOBEC3A protein levels in human cancer cells.","authors":"Alexandra Dananberg, John Maciejowski","doi":"10.1016/bs.mcb.2022.10.008","DOIUrl":"10.1016/bs.mcb.2022.10.008","url":null,"abstract":"<p><p>The APOBEC3 family of cytosine deaminases, which target single-stranded DNA and RNA of viruses and retroelements as part of the innate immune defense, generate mutations in many human cancers. Although the APOBEC3A paralog is a major endogenous source of these mutations, low APOBEC3A mRNA levels and protein abundance have hampered functional characterization. Extensive homology across APOBEC3 paralogs have further challenged the development of specific detection reagents. Here, we describe the isolation and use of monoclonal antibodies with specificity for APOBEC3A and the APOBEC3A/APOBEC3B/APOBEC3G proteins. We provide protocols and technical advice for detection and measurement of APOBEC3A protein across human cancer cell lines using standard immunoblotting and immunofluorescence protocols.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2024-01-01Epub Date: 2024-04-27DOI: 10.1016/bs.mcb.2024.03.013
Ana Muñoz-Jurado, Begoña M Escribano, Isaac Túnez
{"title":"Animal model of multiple sclerosis: Experimental autoimmune encephalomyelitis.","authors":"Ana Muñoz-Jurado, Begoña M Escribano, Isaac Túnez","doi":"10.1016/bs.mcb.2024.03.013","DOIUrl":"https://doi.org/10.1016/bs.mcb.2024.03.013","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2024-01-01Epub Date: 2023-10-24DOI: 10.1016/bs.mcb.2023.05.009
Miao Cao, Robert D Carlson, Ross E Staudt, Adam E Snook
{"title":"In vitro assays to evaluate CAR-T cell cytotoxicity.","authors":"Miao Cao, Robert D Carlson, Ross E Staudt, Adam E Snook","doi":"10.1016/bs.mcb.2023.05.009","DOIUrl":"10.1016/bs.mcb.2023.05.009","url":null,"abstract":"<p><p>This chapter introduces four commonly used in vitro chimeric antigen receptor (CAR)-T cell cytotoxicity assays (lactate dehydrogenase release assay, <sup>51</sup>Cr release assay, IncuCyte live cell killing assay, and xCELLigence real-time analysis) and provides a detailed protocol for xCELLigence real-time analysis. Focusing on in vitro assays, this chapter starts with explaining the mechanisms and discussing the utilization of each assay to quantify T-cell-induced cytotoxicity. Due to the high-throughput quantification and straightforward workflow of xCELLigence real-time analysis, a protocol entailing reagents and equipment, a 3-day step-by-step procedure, and instructions for data analysis are provided.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2024-01-01Epub Date: 2023-09-15DOI: 10.1016/bs.mcb.2023.07.002
Emily Nickles, Runze Xia, Rui Sun, Herbert Schwarz
{"title":"Methods for generating the CD137L-DC-EBV-VAX anti-cancer vaccine.","authors":"Emily Nickles, Runze Xia, Rui Sun, Herbert Schwarz","doi":"10.1016/bs.mcb.2023.07.002","DOIUrl":"10.1016/bs.mcb.2023.07.002","url":null,"abstract":"<p><p>Dendritic cells (DC) are professional antigen presenting cells (APCs) that can efficiently present captured antigens to cytotoxic T cells and initiate powerful antigen-specific responses. Therefore, DC have been explored for cancer immunotherapy. However, due to the scarcity of DCs in the peripheral blood, ex-vivo expansion is required to generate sufficient DCs before use. The majority of DC-based tumor vaccines utilize monocyte-derived DC (mo-DC) that are generated with GM-CSF and IL-4. Here, we describe the generation of a novel type of DC, CD137L-DC, which are generated from monocytes by stimulation with a CD137 ligand agonist, and that proved to be more potent than classical mo-DC in inducing cytotoxic responses against tumor associated viruses, such as EBV and HBV in vitro. In a phase I clinical trial on patients with locally recurrent or metastatic NPC, a CD137L-DC-EBV vaccine showed good tolerability and prolonged patient survival, providing a basis for further development of CD137L-DC vaccines for immunotherapy.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in cell biologyPub Date : 2024-01-01Epub Date: 2023-09-19DOI: 10.1016/bs.mcb.2023.06.005
Ting Pu, Allyson Peddle, Jingjing Zhu, Sabine Tejpar, Sara Verbandt
{"title":"Neoantigen identification: Technological advances and challenges.","authors":"Ting Pu, Allyson Peddle, Jingjing Zhu, Sabine Tejpar, Sara Verbandt","doi":"10.1016/bs.mcb.2023.06.005","DOIUrl":"10.1016/bs.mcb.2023.06.005","url":null,"abstract":"<p><p>Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}