{"title":"Assessment of adhering and invading properties of Escherichia coli strains.","authors":"Valerio Iebba","doi":"10.1016/bs.mcb.2024.08.011","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal infections, caused by Enterobacteriaceae, pose a major global health challenge, resulting in significant morbidity and mortality. Enhanced adherence and invasion properties are widespread among enteric pathogenic species, particularly those linked to invasive infections such as some pathovars of Escherichia coli or pathogens like Shigella and Salmonella. Pathogenic E. coli strains are categorized into various pathotypes, including diarrheagenic E. coli (DEC) and extraintestinal pathogenic E. coli (ExPEC). Notably, Enteroinvasive E. coli (EIEC) and Adherent-invasive E. coli (AIEC) demonstrate significant invasive properties. EIEC, similar to Shigella, invades intestinal epithelial cells causing dysentery-like illness, while AIEC persists in the gut epithelium, potentially contributing to chronic inflammatory bowel diseases (IBD). Techniques like cell culture assays are vital for assessing E. coli's adherence and invasion capabilities, with specific virulence factors such as fimbriae and type III secretion systems (T3SS) playing crucial roles. Comparatively, Shigella and Salmonella also utilize T3SS for epithelial cell invasion, but with distinct effector proteins and mechanisms. Understanding these differences is crucial for diagnosis and treatment, as advanced molecular diagnostics improve the identification of invasive E. coli strains. Potential therapeutic interventions targeting fimbrial adherence, T3SS and effector proteins offer promising avenues for developing antivirulence drugs. Here are provided protocols for studying the adherence and invasion properties of E. coli and other Enterobacteriaceae to enhance diagnostic methods, ultimately improving the management of enteric infections.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"194 ","pages":"169-190"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.08.011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Gastrointestinal infections, caused by Enterobacteriaceae, pose a major global health challenge, resulting in significant morbidity and mortality. Enhanced adherence and invasion properties are widespread among enteric pathogenic species, particularly those linked to invasive infections such as some pathovars of Escherichia coli or pathogens like Shigella and Salmonella. Pathogenic E. coli strains are categorized into various pathotypes, including diarrheagenic E. coli (DEC) and extraintestinal pathogenic E. coli (ExPEC). Notably, Enteroinvasive E. coli (EIEC) and Adherent-invasive E. coli (AIEC) demonstrate significant invasive properties. EIEC, similar to Shigella, invades intestinal epithelial cells causing dysentery-like illness, while AIEC persists in the gut epithelium, potentially contributing to chronic inflammatory bowel diseases (IBD). Techniques like cell culture assays are vital for assessing E. coli's adherence and invasion capabilities, with specific virulence factors such as fimbriae and type III secretion systems (T3SS) playing crucial roles. Comparatively, Shigella and Salmonella also utilize T3SS for epithelial cell invasion, but with distinct effector proteins and mechanisms. Understanding these differences is crucial for diagnosis and treatment, as advanced molecular diagnostics improve the identification of invasive E. coli strains. Potential therapeutic interventions targeting fimbrial adherence, T3SS and effector proteins offer promising avenues for developing antivirulence drugs. Here are provided protocols for studying the adherence and invasion properties of E. coli and other Enterobacteriaceae to enhance diagnostic methods, ultimately improving the management of enteric infections.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.