测定抗原识别的人原代t细胞具有选择的原位交换tcr。

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Methods in cell biology Pub Date : 2025-01-01 Epub Date: 2024-04-15 DOI:10.1016/bs.mcb.2024.03.003
Vanessa Mühlgrabner, Angelika Plach, Johannes Holler, Judith Leitner, Peter Steinberger, Loïc Dupré, Janett Göhring, Johannes B Huppa
{"title":"测定抗原识别的人原代t细胞具有选择的原位交换tcr。","authors":"Vanessa Mühlgrabner, Angelika Plach, Johannes Holler, Judith Leitner, Peter Steinberger, Loïc Dupré, Janett Göhring, Johannes B Huppa","doi":"10.1016/bs.mcb.2024.03.003","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding human T-cell antigen recognition in health and disease is becoming increasingly instrumental for monitoring T-cell responses to pathogen challenge and for the rational design of T-cell-based therapies targeting cancer, autoimmunity and organ transplant rejection. Here we showcase a quantitative imaging platform which is based on the use of planar glass-supported lipid bilayers (SLBs). The latter are functionalized with antigen (peptide-loaded HLA) as adhesion and costimulatory molecules (ICAM-1, B7-1) to serve as surrogate antigen presenting cell for antigen recognition by T-cells, which are equipped with T-cell antigen receptors (TCRs) sequenced from antigen-specific patient T-cells. We outline in detail, how the experimental use of SLBs supports recoding and analysis of synaptic antigen engagement and calcium signaling at the single cell level in response to user-defined antigen densities for quantitative comparison.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"193 ","pages":"127-154"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gauging antigen recognition by human primary T-cells featuring orthotopically exchanged TCRs of choice.\",\"authors\":\"Vanessa Mühlgrabner, Angelika Plach, Johannes Holler, Judith Leitner, Peter Steinberger, Loïc Dupré, Janett Göhring, Johannes B Huppa\",\"doi\":\"10.1016/bs.mcb.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding human T-cell antigen recognition in health and disease is becoming increasingly instrumental for monitoring T-cell responses to pathogen challenge and for the rational design of T-cell-based therapies targeting cancer, autoimmunity and organ transplant rejection. Here we showcase a quantitative imaging platform which is based on the use of planar glass-supported lipid bilayers (SLBs). The latter are functionalized with antigen (peptide-loaded HLA) as adhesion and costimulatory molecules (ICAM-1, B7-1) to serve as surrogate antigen presenting cell for antigen recognition by T-cells, which are equipped with T-cell antigen receptors (TCRs) sequenced from antigen-specific patient T-cells. We outline in detail, how the experimental use of SLBs supports recoding and analysis of synaptic antigen engagement and calcium signaling at the single cell level in response to user-defined antigen densities for quantitative comparison.</p>\",\"PeriodicalId\":18437,\"journal\":{\"name\":\"Methods in cell biology\",\"volume\":\"193 \",\"pages\":\"127-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mcb.2024.03.003\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.03.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

了解人类t细胞抗原在健康和疾病中的识别,对于监测t细胞对病原体的反应,以及合理设计针对癌症、自身免疫和器官移植排斥的基于t细胞的治疗方法,正变得越来越重要。在这里,我们展示了一个基于平面玻璃支撑脂质双分子层(slb)的定量成像平台。后者被抗原(肽负载HLA)功能化,作为粘附和共刺激分子(ICAM-1, B7-1),作为替代抗原提呈细胞,供t细胞识别抗原,t细胞配备从抗原特异性患者t细胞中测序的t细胞抗原受体(tcr)。我们详细概述了slb的实验使用如何支持在单细胞水平上对突触抗原接合和钙信号的重新编码和分析,以响应自定义的抗原密度进行定量比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauging antigen recognition by human primary T-cells featuring orthotopically exchanged TCRs of choice.

Understanding human T-cell antigen recognition in health and disease is becoming increasingly instrumental for monitoring T-cell responses to pathogen challenge and for the rational design of T-cell-based therapies targeting cancer, autoimmunity and organ transplant rejection. Here we showcase a quantitative imaging platform which is based on the use of planar glass-supported lipid bilayers (SLBs). The latter are functionalized with antigen (peptide-loaded HLA) as adhesion and costimulatory molecules (ICAM-1, B7-1) to serve as surrogate antigen presenting cell for antigen recognition by T-cells, which are equipped with T-cell antigen receptors (TCRs) sequenced from antigen-specific patient T-cells. We outline in detail, how the experimental use of SLBs supports recoding and analysis of synaptic antigen engagement and calcium signaling at the single cell level in response to user-defined antigen densities for quantitative comparison.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in cell biology
Methods in cell biology 生物-细胞生物学
CiteScore
3.10
自引率
0.00%
发文量
125
审稿时长
3 months
期刊介绍: For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信