大肠杆菌菌株黏附与侵袭特性的评估。

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Methods in cell biology Pub Date : 2025-01-01 Epub Date: 2024-09-20 DOI:10.1016/bs.mcb.2024.08.011
Valerio Iebba
{"title":"大肠杆菌菌株黏附与侵袭特性的评估。","authors":"Valerio Iebba","doi":"10.1016/bs.mcb.2024.08.011","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal infections, caused by Enterobacteriaceae, pose a major global health challenge, resulting in significant morbidity and mortality. Enhanced adherence and invasion properties are widespread among enteric pathogenic species, particularly those linked to invasive infections such as some pathovars of Escherichia coli or pathogens like Shigella and Salmonella. Pathogenic E. coli strains are categorized into various pathotypes, including diarrheagenic E. coli (DEC) and extraintestinal pathogenic E. coli (ExPEC). Notably, Enteroinvasive E. coli (EIEC) and Adherent-invasive E. coli (AIEC) demonstrate significant invasive properties. EIEC, similar to Shigella, invades intestinal epithelial cells causing dysentery-like illness, while AIEC persists in the gut epithelium, potentially contributing to chronic inflammatory bowel diseases (IBD). Techniques like cell culture assays are vital for assessing E. coli's adherence and invasion capabilities, with specific virulence factors such as fimbriae and type III secretion systems (T3SS) playing crucial roles. Comparatively, Shigella and Salmonella also utilize T3SS for epithelial cell invasion, but with distinct effector proteins and mechanisms. Understanding these differences is crucial for diagnosis and treatment, as advanced molecular diagnostics improve the identification of invasive E. coli strains. Potential therapeutic interventions targeting fimbrial adherence, T3SS and effector proteins offer promising avenues for developing antivirulence drugs. Here are provided protocols for studying the adherence and invasion properties of E. coli and other Enterobacteriaceae to enhance diagnostic methods, ultimately improving the management of enteric infections.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"194 ","pages":"169-190"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of adhering and invading properties of Escherichia coli strains.\",\"authors\":\"Valerio Iebba\",\"doi\":\"10.1016/bs.mcb.2024.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastrointestinal infections, caused by Enterobacteriaceae, pose a major global health challenge, resulting in significant morbidity and mortality. Enhanced adherence and invasion properties are widespread among enteric pathogenic species, particularly those linked to invasive infections such as some pathovars of Escherichia coli or pathogens like Shigella and Salmonella. Pathogenic E. coli strains are categorized into various pathotypes, including diarrheagenic E. coli (DEC) and extraintestinal pathogenic E. coli (ExPEC). Notably, Enteroinvasive E. coli (EIEC) and Adherent-invasive E. coli (AIEC) demonstrate significant invasive properties. EIEC, similar to Shigella, invades intestinal epithelial cells causing dysentery-like illness, while AIEC persists in the gut epithelium, potentially contributing to chronic inflammatory bowel diseases (IBD). Techniques like cell culture assays are vital for assessing E. coli's adherence and invasion capabilities, with specific virulence factors such as fimbriae and type III secretion systems (T3SS) playing crucial roles. Comparatively, Shigella and Salmonella also utilize T3SS for epithelial cell invasion, but with distinct effector proteins and mechanisms. Understanding these differences is crucial for diagnosis and treatment, as advanced molecular diagnostics improve the identification of invasive E. coli strains. Potential therapeutic interventions targeting fimbrial adherence, T3SS and effector proteins offer promising avenues for developing antivirulence drugs. Here are provided protocols for studying the adherence and invasion properties of E. coli and other Enterobacteriaceae to enhance diagnostic methods, ultimately improving the management of enteric infections.</p>\",\"PeriodicalId\":18437,\"journal\":{\"name\":\"Methods in cell biology\",\"volume\":\"194 \",\"pages\":\"169-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mcb.2024.08.011\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.08.011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

肠杆菌科引起的胃肠道感染对全球健康构成重大挑战,导致大量发病率和死亡率。增强的粘附性和侵袭性在肠道致病性物种中普遍存在,特别是那些与侵袭性感染有关的物种,如大肠杆菌的某些病原体或志贺氏菌和沙门氏菌等病原体。致病性大肠杆菌菌株分为多种致病性,包括腹泻性大肠杆菌(DEC)和肠外致病性大肠杆菌(ExPEC)。值得注意的是,肠侵入性大肠杆菌(EIEC)和粘附侵入性大肠杆菌(AIEC)表现出显著的侵入性。与志贺氏菌类似,EIEC侵入肠上皮细胞引起类似痢疾的疾病,而AIEC持续存在于肠上皮细胞,可能导致慢性炎症性肠病(IBD)。细胞培养测定等技术对于评估大肠杆菌的粘附和侵袭能力至关重要,特定的毒力因子如菌毛和III型分泌系统(T3SS)起着至关重要的作用。相比之下,志贺氏菌和沙门氏菌也利用T3SS侵袭上皮细胞,但具有不同的效应蛋白和机制。了解这些差异对于诊断和治疗至关重要,因为先进的分子诊断可以提高对侵入性大肠杆菌菌株的识别。潜在的针对毛缘粘附性、T3SS和效应蛋白的治疗干预为开发抗毒药物提供了有希望的途径。本文为研究大肠杆菌和其他肠杆菌科细菌的粘附和侵袭特性提供了方案,以提高诊断方法,最终改善肠道感染的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of adhering and invading properties of Escherichia coli strains.

Gastrointestinal infections, caused by Enterobacteriaceae, pose a major global health challenge, resulting in significant morbidity and mortality. Enhanced adherence and invasion properties are widespread among enteric pathogenic species, particularly those linked to invasive infections such as some pathovars of Escherichia coli or pathogens like Shigella and Salmonella. Pathogenic E. coli strains are categorized into various pathotypes, including diarrheagenic E. coli (DEC) and extraintestinal pathogenic E. coli (ExPEC). Notably, Enteroinvasive E. coli (EIEC) and Adherent-invasive E. coli (AIEC) demonstrate significant invasive properties. EIEC, similar to Shigella, invades intestinal epithelial cells causing dysentery-like illness, while AIEC persists in the gut epithelium, potentially contributing to chronic inflammatory bowel diseases (IBD). Techniques like cell culture assays are vital for assessing E. coli's adherence and invasion capabilities, with specific virulence factors such as fimbriae and type III secretion systems (T3SS) playing crucial roles. Comparatively, Shigella and Salmonella also utilize T3SS for epithelial cell invasion, but with distinct effector proteins and mechanisms. Understanding these differences is crucial for diagnosis and treatment, as advanced molecular diagnostics improve the identification of invasive E. coli strains. Potential therapeutic interventions targeting fimbrial adherence, T3SS and effector proteins offer promising avenues for developing antivirulence drugs. Here are provided protocols for studying the adherence and invasion properties of E. coli and other Enterobacteriaceae to enhance diagnostic methods, ultimately improving the management of enteric infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in cell biology
Methods in cell biology 生物-细胞生物学
CiteScore
3.10
自引率
0.00%
发文量
125
审稿时长
3 months
期刊介绍: For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信