Vanessa Mühlgrabner, Angelika Plach, Johannes Holler, Judith Leitner, Peter Steinberger, Loïc Dupré, Janett Göhring, Johannes B Huppa
{"title":"Gauging antigen recognition by human primary T-cells featuring orthotopically exchanged TCRs of choice.","authors":"Vanessa Mühlgrabner, Angelika Plach, Johannes Holler, Judith Leitner, Peter Steinberger, Loïc Dupré, Janett Göhring, Johannes B Huppa","doi":"10.1016/bs.mcb.2024.03.003","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding human T-cell antigen recognition in health and disease is becoming increasingly instrumental for monitoring T-cell responses to pathogen challenge and for the rational design of T-cell-based therapies targeting cancer, autoimmunity and organ transplant rejection. Here we showcase a quantitative imaging platform which is based on the use of planar glass-supported lipid bilayers (SLBs). The latter are functionalized with antigen (peptide-loaded HLA) as adhesion and costimulatory molecules (ICAM-1, B7-1) to serve as surrogate antigen presenting cell for antigen recognition by T-cells, which are equipped with T-cell antigen receptors (TCRs) sequenced from antigen-specific patient T-cells. We outline in detail, how the experimental use of SLBs supports recoding and analysis of synaptic antigen engagement and calcium signaling at the single cell level in response to user-defined antigen densities for quantitative comparison.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"193 ","pages":"127-154"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.03.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding human T-cell antigen recognition in health and disease is becoming increasingly instrumental for monitoring T-cell responses to pathogen challenge and for the rational design of T-cell-based therapies targeting cancer, autoimmunity and organ transplant rejection. Here we showcase a quantitative imaging platform which is based on the use of planar glass-supported lipid bilayers (SLBs). The latter are functionalized with antigen (peptide-loaded HLA) as adhesion and costimulatory molecules (ICAM-1, B7-1) to serve as surrogate antigen presenting cell for antigen recognition by T-cells, which are equipped with T-cell antigen receptors (TCRs) sequenced from antigen-specific patient T-cells. We outline in detail, how the experimental use of SLBs supports recoding and analysis of synaptic antigen engagement and calcium signaling at the single cell level in response to user-defined antigen densities for quantitative comparison.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.