{"title":"Chordal and Perfect Zero-Divisor Graphs of Posets and Applications to Graphs Associated with Algebraic Structures","authors":"Nilesh Khandekar, Vinayak Joshi","doi":"10.1515/ms-2023-0081","DOIUrl":"https://doi.org/10.1515/ms-2023-0081","url":null,"abstract":"ABSTRACT In this paper, we characterize the perfect zero-divisor graphs and chordal zero-divisor graphs (its complement) of ordered sets. These results are applied to the zero-divisor graphs of finite reduced rings, the comaximal ideal graphs of rings, the annihilating ideal graphs of rings, the intersection graphs of ideals of rings, and the intersection graphs of subgroups of groups. In fact, it is shown that these graphs associated with a commutative ring R with identity can be effectively studied via the zero-divisor graph of a specially constructed poset from R .","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136117533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Lehmann Type II Teissier Distribution","authors":"V. Kumaran, Vishwa Prakash Jha","doi":"10.1515/ms-2023-0094","DOIUrl":"https://doi.org/10.1515/ms-2023-0094","url":null,"abstract":"ABSTRACT In this work, a two-parameter continuous distribution, namely the Lehmann type II Teissier distribution is introduced. Some important properties including the Rényi entropy, Bonferroni curves, Lorenz curves and the exact information matrix of the proposed model are derived. Seven different techniques are being used for the estimation of parameters and a simulation is carried out to observe the maximum likelihood estimates. Interval estimates of the parameters are obtained using exact information matrix and bootstrapping techniques. Finally, to show the practical significance, three datasets related to COVID-19 and rainfall are modeled using the proposed model.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135606299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remembering Professor Štefan Znám, 9.2.1936–17.7.1993","authors":"Peter Horák","doi":"10.1515/ms-2023-0080","DOIUrl":"https://doi.org/10.1515/ms-2023-0080","url":null,"abstract":"","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135606433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Rational Parametric Solution of Diagonal Quartic Varieties","authors":"Hassan Shabani-Solt, Amir Sarlak","doi":"10.1515/ms-2023-0085","DOIUrl":"https://doi.org/10.1515/ms-2023-0085","url":null,"abstract":"ABSTRACT In this paper, we exhibit a rational parametric solution for the Diophantine equations of diagonal quartic varieties. Our approach is based on utilizing the Calabi-Yau varieties including elliptic curves and diagonal quartic surfaces.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135606544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Oscillation Criteria of Odd-Order Differential Equations with Mixed Neutral Terms","authors":"Said R. Grace, Syed Abbas, Shekhar Singh Negi","doi":"10.1515/ms-2023-0091","DOIUrl":"https://doi.org/10.1515/ms-2023-0091","url":null,"abstract":"ABSTRACT This paper is concerned with the oscillation criteria of odd-order non-linear differential equations with mixed non-linear neutral terms. We provide new oscillation criteria that improve, expand, and simplify existing ones. Moreover, some examples are provided to demonstrate the theoretical findings.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135606545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Numerical Problems in Computing Life Annuities Based on the Makeham–Beard Law","authors":"Fredy Castellares, Artur J. Lemonte","doi":"10.1515/ms-2023-0096","DOIUrl":"https://doi.org/10.1515/ms-2023-0096","url":null,"abstract":"ABSTRACT Analytic expressions for the single and joint life annuities based on the Makeham–Beard mortality law have been derived recently in the literature, which depend on special mathematical functions such as hypergeometric functions. We verify that the arguments of the hypergeometric functions in the analytic expressions for the single and joint life annuities may assume values very close to unity (boundary of the convergence radius), and so numerical problems may arise when using them in practice. We provide, therefore, alternative analytic expressions for the single and joint life annuities where the arguments of the hypergeometric functions in the new analytic expressions do not assume values close to one.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135607036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theory of Certain Non-Univalent Analytic Functions","authors":"Kamaljeet Gangania","doi":"10.1515/ms-2023-0086","DOIUrl":"https://doi.org/10.1515/ms-2023-0086","url":null,"abstract":"ABSTRACT We investigate the non-univalent function’s properties reminiscent of the theory of univalent starlike functions. Let the analytic function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>ψ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>z</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mstyle displaystyle=\"true\"> <m:munderover> <m:mo>∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>∞</m:mi> </m:munderover> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> <m:msup> <m:mi>z</m:mi> <m:mi>i</m:mi> </m:msup> </m:mrow> </m:mstyle> </m:mrow> </m:math> , A 1 ≠ 0 be univalent in the unitdisk. Non-univalent functions may be found in the class <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>ℱ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>ψ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> of analytic functions f of the form <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>z</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mstyle displaystyle=\"true\"> <m:munderover> <m:mo>∑</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mi>∞</m:mi> </m:munderover> <m:mrow> <m:msub> <m:mi>a</m:mi> <m:mi>k</m:mi> </m:msub> <m:msup> <m:mi>z</m:mi> <m:mi>k</m:mi> </m:msup> </m:mrow> </m:mstyle> </m:mrow> </m:math> satisfying ( zf ′ ( z )/ f ( z ) – 1) ≺ ψ ( z ). Such functions, like the Ma and Minda classes k=2 of starlike functions, also have nice geometric properties. For these functions, growth and distortion theorems have been established. Further, we obtain bounds for some sharp coefficient functionals and establish the Bohr and Rogosinki phenomenon for the class <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>ℱ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>ψ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> . Non-analytic functions that share properties of analytic functions are known as poly-analytic functions. Moreover, we compute Bohr and Rogosinski’s radius for poly-analytic functions with analytic counterparts in the class <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>ℱ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>ψ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> or classes of Ma-Minda starlike and convex functions.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135607185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)","authors":"Gangadharan Murugusundaramoorthy, Teodor Bulboacă","doi":"10.1515/ms-2023-0087","DOIUrl":"https://doi.org/10.1515/ms-2023-0087","url":null,"abstract":"ABSTRACT The purpose of this paper is to find coefficient estimates for the class of functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\"fraktur\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> consisting of analytic functions f normalized by f (0) = f′ (0) – 1 = 0 in the open unit disk <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mi mathvariant=\"double-struck\">D</m:mi> </m:math> subordinated to a function generated using the van der Pol numbers, and to derive certain coefficient estimates for a 2 , a 3 , and the Fekete-Szegő functional upper bound for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\"fraktur\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> . Similar results were obtained for the logarithmic coefficients of these functions. Further application of our results to certain functions defined by convolution products with a normalized analytic functions is given, and in particular, we obtain Fekete-Szegő inequalities for certain subclasses of functions defined through the Poisson distribution series.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135607195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oscillation of Odd Order Linear Differential Equations with Deviating Arguments with Dominating Delay Part","authors":"B. Baculíková","doi":"10.1515/ms-2023-0070","DOIUrl":"https://doi.org/10.1515/ms-2023-0070","url":null,"abstract":"ABSTRACT In this paper new oscillatory criteria for odd order linear functional differential equations of the type y(n)(t)+p(t)y(τ(t))=0 [{{y}^{(n)}}(t)+p(t)y(tau (t))=0] have been established. Deviating argument τ(t) is supposed to have dominating delay part.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47638283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Besov and Triebel-Lizorkin Capacity in Metric Spaces","authors":"Nijjwal Karak, Debarati Mondal","doi":"10.1515/ms-2023-0069","DOIUrl":"https://doi.org/10.1515/ms-2023-0069","url":null,"abstract":"ABSTRACT We prove a lower bound estimate for Hajłasz-Besov capacity in metric spaces in terms of Netrusov-Hausdorff content. We also prove a similar estimate for Hajłasz-Triebel-Lizorkin capacity in terms of Hausdoroff content. These results are improvements of the earlier results obtained by Nuutinen in 2016 and the first author in 2020.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46066723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}