{"title":"Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)","authors":"Gangadharan Murugusundaramoorthy, Teodor Bulboacă","doi":"10.1515/ms-2023-0087","DOIUrl":null,"url":null,"abstract":"ABSTRACT The purpose of this paper is to find coefficient estimates for the class of functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\"fraktur\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> consisting of analytic functions f normalized by f (0) = f′ (0) – 1 = 0 in the open unit disk <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mi mathvariant=\"double-struck\">D</m:mi> </m:math> subordinated to a function generated using the van der Pol numbers, and to derive certain coefficient estimates for a 2 , a 3 , and the Fekete-Szegő functional upper bound for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\"fraktur\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> . Similar results were obtained for the logarithmic coefficients of these functions. Further application of our results to certain functions defined by convolution products with a normalized analytic functions is given, and in particular, we obtain Fekete-Szegő inequalities for certain subclasses of functions defined through the Poisson distribution series.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The purpose of this paper is to find coefficient estimates for the class of functions ℳN(γ,ϑ,λ) consisting of analytic functions f normalized by f (0) = f′ (0) – 1 = 0 in the open unit disk D subordinated to a function generated using the van der Pol numbers, and to derive certain coefficient estimates for a 2 , a 3 , and the Fekete-Szegő functional upper bound for f∈ℳN(γ,ϑ,λ) . Similar results were obtained for the logarithmic coefficients of these functions. Further application of our results to certain functions defined by convolution products with a normalized analytic functions is given, and in particular, we obtain Fekete-Szegő inequalities for certain subclasses of functions defined through the Poisson distribution series.