Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)

Pub Date : 2023-10-01 DOI:10.1515/ms-2023-0087
Gangadharan Murugusundaramoorthy, Teodor Bulboacă
{"title":"Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)","authors":"Gangadharan Murugusundaramoorthy, Teodor Bulboacă","doi":"10.1515/ms-2023-0087","DOIUrl":null,"url":null,"abstract":"ABSTRACT The purpose of this paper is to find coefficient estimates for the class of functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\"fraktur\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> consisting of analytic functions f normalized by f (0) = f′ (0) – 1 = 0 in the open unit disk <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mi mathvariant=\"double-struck\">D</m:mi> </m:math> subordinated to a function generated using the van der Pol numbers, and to derive certain coefficient estimates for a 2 , a 3 , and the Fekete-Szegő functional upper bound for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\"fraktur\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> . Similar results were obtained for the logarithmic coefficients of these functions. Further application of our results to certain functions defined by convolution products with a normalized analytic functions is given, and in particular, we obtain Fekete-Szegő inequalities for certain subclasses of functions defined through the Poisson distribution series.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The purpose of this paper is to find coefficient estimates for the class of functions N ( γ , ϑ , λ ) consisting of analytic functions f normalized by f (0) = f′ (0) – 1 = 0 in the open unit disk D subordinated to a function generated using the van der Pol numbers, and to derive certain coefficient estimates for a 2 , a 3 , and the Fekete-Szegő functional upper bound for f N ( γ , ϑ , λ ) . Similar results were obtained for the logarithmic coefficients of these functions. Further application of our results to certain functions defined by convolution products with a normalized analytic functions is given, and in particular, we obtain Fekete-Szegő inequalities for certain subclasses of functions defined through the Poisson distribution series.
分享
查看原文
van der Pol数函数的初始系数和fekete - szeger不等式
文摘的目的是找到系数估计函数的类ℳN(γ、ϑλ)组成的解析函数归一化的f (0) = f(0) - 1 = 0的单位圆盘D次级使用范德堡尔数字生成一个函数,并推导出某些系数估计为2,3,和Fekete-Szegő函数上界f∈ℳN(γ,ϑλ)。这些函数的对数系数也得到了类似的结果。将我们的结果进一步应用于由归一化解析函数的卷积积所定义的某些函数,特别是得到了由泊松分布级数所定义的函数的某些子类的fekete - szegov不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信