{"title":"具有控制时滞部分的具偏差变元的奇阶线性微分方程的振动性","authors":"B. Baculíková","doi":"10.1515/ms-2023-0070","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper new oscillatory criteria for odd order linear functional differential equations of the type y(n)(t)+p(t)y(τ(t))=0 \\[{{y}^{(n)}}(t)+p(t)y(\\tau (t))=0\\] have been established. Deviating argument τ(t) is supposed to have dominating delay part.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillation of Odd Order Linear Differential Equations with Deviating Arguments with Dominating Delay Part\",\"authors\":\"B. Baculíková\",\"doi\":\"10.1515/ms-2023-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper new oscillatory criteria for odd order linear functional differential equations of the type y(n)(t)+p(t)y(τ(t))=0 \\\\[{{y}^{(n)}}(t)+p(t)y(\\\\tau (t))=0\\\\] have been established. Deviating argument τ(t) is supposed to have dominating delay part.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2023-0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oscillation of Odd Order Linear Differential Equations with Deviating Arguments with Dominating Delay Part
ABSTRACT In this paper new oscillatory criteria for odd order linear functional differential equations of the type y(n)(t)+p(t)y(τ(t))=0 \[{{y}^{(n)}}(t)+p(t)y(\tau (t))=0\] have been established. Deviating argument τ(t) is supposed to have dominating delay part.