{"title":"度量空间中的Besov和triiebel - lizorkin容量","authors":"Nijjwal Karak, Debarati Mondal","doi":"10.1515/ms-2023-0069","DOIUrl":null,"url":null,"abstract":"ABSTRACT We prove a lower bound estimate for Hajłasz-Besov capacity in metric spaces in terms of Netrusov-Hausdorff content. We also prove a similar estimate for Hajłasz-Triebel-Lizorkin capacity in terms of Hausdoroff content. These results are improvements of the earlier results obtained by Nuutinen in 2016 and the first author in 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Besov and Triebel-Lizorkin Capacity in Metric Spaces\",\"authors\":\"Nijjwal Karak, Debarati Mondal\",\"doi\":\"10.1515/ms-2023-0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We prove a lower bound estimate for Hajłasz-Besov capacity in metric spaces in terms of Netrusov-Hausdorff content. We also prove a similar estimate for Hajłasz-Triebel-Lizorkin capacity in terms of Hausdoroff content. These results are improvements of the earlier results obtained by Nuutinen in 2016 and the first author in 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2023-0069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Besov and Triebel-Lizorkin Capacity in Metric Spaces
ABSTRACT We prove a lower bound estimate for Hajłasz-Besov capacity in metric spaces in terms of Netrusov-Hausdorff content. We also prove a similar estimate for Hajłasz-Triebel-Lizorkin capacity in terms of Hausdoroff content. These results are improvements of the earlier results obtained by Nuutinen in 2016 and the first author in 2020.