{"title":"van der Pol数函数的初始系数和fekete - szeger不等式","authors":"Gangadharan Murugusundaramoorthy, Teodor Bulboacă","doi":"10.1515/ms-2023-0087","DOIUrl":null,"url":null,"abstract":"ABSTRACT The purpose of this paper is to find coefficient estimates for the class of functions <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\"fraktur\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> consisting of analytic functions f normalized by f (0) = f′ (0) – 1 = 0 in the open unit disk <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mi mathvariant=\"double-struck\">D</m:mi> </m:math> subordinated to a function generated using the van der Pol numbers, and to derive certain coefficient estimates for a 2 , a 3 , and the Fekete-Szegő functional upper bound for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\"fraktur\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> . Similar results were obtained for the logarithmic coefficients of these functions. Further application of our results to certain functions defined by convolution products with a normalized analytic functions is given, and in particular, we obtain Fekete-Szegő inequalities for certain subclasses of functions defined through the Poisson distribution series.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)\",\"authors\":\"Gangadharan Murugusundaramoorthy, Teodor Bulboacă\",\"doi\":\"10.1515/ms-2023-0087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The purpose of this paper is to find coefficient estimates for the class of functions <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\\\"fraktur\\\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> consisting of analytic functions f normalized by f (0) = f′ (0) – 1 = 0 in the open unit disk <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mi mathvariant=\\\"double-struck\\\">D</m:mi> </m:math> subordinated to a function generated using the van der Pol numbers, and to derive certain coefficient estimates for a 2 , a 3 , and the Fekete-Szegő functional upper bound for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>ℳ</m:mi> <m:mi mathvariant=\\\"fraktur\\\">N</m:mi> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>γ</m:mi> <m:mo>,</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mo>λ</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> . Similar results were obtained for the logarithmic coefficients of these functions. Further application of our results to certain functions defined by convolution products with a normalized analytic functions is given, and in particular, we obtain Fekete-Szegő inequalities for certain subclasses of functions defined through the Poisson distribution series.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)
ABSTRACT The purpose of this paper is to find coefficient estimates for the class of functions ℳN(γ,ϑ,λ) consisting of analytic functions f normalized by f (0) = f′ (0) – 1 = 0 in the open unit disk D subordinated to a function generated using the van der Pol numbers, and to derive certain coefficient estimates for a 2 , a 3 , and the Fekete-Szegő functional upper bound for f∈ℳN(γ,ϑ,λ) . Similar results were obtained for the logarithmic coefficients of these functions. Further application of our results to certain functions defined by convolution products with a normalized analytic functions is given, and in particular, we obtain Fekete-Szegő inequalities for certain subclasses of functions defined through the Poisson distribution series.