基于Makeham-Beard定律计算终身年金的数值问题

Pub Date : 2023-10-01 DOI:10.1515/ms-2023-0096
Fredy Castellares, Artur J. Lemonte
{"title":"基于Makeham-Beard定律计算终身年金的数值问题","authors":"Fredy Castellares, Artur J. Lemonte","doi":"10.1515/ms-2023-0096","DOIUrl":null,"url":null,"abstract":"ABSTRACT Analytic expressions for the single and joint life annuities based on the Makeham–Beard mortality law have been derived recently in the literature, which depend on special mathematical functions such as hypergeometric functions. We verify that the arguments of the hypergeometric functions in the analytic expressions for the single and joint life annuities may assume values very close to unity (boundary of the convergence radius), and so numerical problems may arise when using them in practice. We provide, therefore, alternative analytic expressions for the single and joint life annuities where the arguments of the hypergeometric functions in the new analytic expressions do not assume values close to one.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Numerical Problems in Computing Life Annuities Based on the Makeham–Beard Law\",\"authors\":\"Fredy Castellares, Artur J. Lemonte\",\"doi\":\"10.1515/ms-2023-0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Analytic expressions for the single and joint life annuities based on the Makeham–Beard mortality law have been derived recently in the literature, which depend on special mathematical functions such as hypergeometric functions. We verify that the arguments of the hypergeometric functions in the analytic expressions for the single and joint life annuities may assume values very close to unity (boundary of the convergence radius), and so numerical problems may arise when using them in practice. We provide, therefore, alternative analytic expressions for the single and joint life annuities where the arguments of the hypergeometric functions in the new analytic expressions do not assume values close to one.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于Makeham-Beard死亡率律的单年金和联名年金的解析表达式依赖于超几何函数等特殊的数学函数。我们验证了单年金和联合年金解析表达式中的超几何函数的参数可以取非常接近于统一(收敛半径边界)的值,因此在实际应用时可能会出现数值问题。因此,我们提供了单一和联合年金的替代解析表达式,其中新解析表达式中的超几何函数的参数不假设接近1的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Numerical Problems in Computing Life Annuities Based on the Makeham–Beard Law
ABSTRACT Analytic expressions for the single and joint life annuities based on the Makeham–Beard mortality law have been derived recently in the literature, which depend on special mathematical functions such as hypergeometric functions. We verify that the arguments of the hypergeometric functions in the analytic expressions for the single and joint life annuities may assume values very close to unity (boundary of the convergence radius), and so numerical problems may arise when using them in practice. We provide, therefore, alternative analytic expressions for the single and joint life annuities where the arguments of the hypergeometric functions in the new analytic expressions do not assume values close to one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信