{"title":"某些非单价解析函数的理论","authors":"Kamaljeet Gangania","doi":"10.1515/ms-2023-0086","DOIUrl":null,"url":null,"abstract":"ABSTRACT We investigate the non-univalent function’s properties reminiscent of the theory of univalent starlike functions. Let the analytic function <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>ψ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>z</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mstyle displaystyle=\"true\"> <m:munderover> <m:mo>∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>∞</m:mi> </m:munderover> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> <m:msup> <m:mi>z</m:mi> <m:mi>i</m:mi> </m:msup> </m:mrow> </m:mstyle> </m:mrow> </m:math> , A 1 ≠ 0 be univalent in the unitdisk. Non-univalent functions may be found in the class <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>ℱ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>ψ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> of analytic functions f of the form <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>z</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mstyle displaystyle=\"true\"> <m:munderover> <m:mo>∑</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mi>∞</m:mi> </m:munderover> <m:mrow> <m:msub> <m:mi>a</m:mi> <m:mi>k</m:mi> </m:msub> <m:msup> <m:mi>z</m:mi> <m:mi>k</m:mi> </m:msup> </m:mrow> </m:mstyle> </m:mrow> </m:math> satisfying ( zf ′ ( z )/ f ( z ) – 1) ≺ ψ ( z ). Such functions, like the Ma and Minda classes k=2 of starlike functions, also have nice geometric properties. For these functions, growth and distortion theorems have been established. Further, we obtain bounds for some sharp coefficient functionals and establish the Bohr and Rogosinki phenomenon for the class <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>ℱ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>ψ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> . Non-analytic functions that share properties of analytic functions are known as poly-analytic functions. Moreover, we compute Bohr and Rogosinski’s radius for poly-analytic functions with analytic counterparts in the class <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>ℱ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>ψ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> or classes of Ma-Minda starlike and convex functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory of Certain Non-Univalent Analytic Functions\",\"authors\":\"Kamaljeet Gangania\",\"doi\":\"10.1515/ms-2023-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We investigate the non-univalent function’s properties reminiscent of the theory of univalent starlike functions. Let the analytic function <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:mi>ψ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>z</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mstyle displaystyle=\\\"true\\\"> <m:munderover> <m:mo>∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>∞</m:mi> </m:munderover> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> <m:msup> <m:mi>z</m:mi> <m:mi>i</m:mi> </m:msup> </m:mrow> </m:mstyle> </m:mrow> </m:math> , A 1 ≠ 0 be univalent in the unitdisk. Non-univalent functions may be found in the class <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:mi>ℱ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>ψ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> of analytic functions f of the form <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>z</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mstyle displaystyle=\\\"true\\\"> <m:munderover> <m:mo>∑</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mi>∞</m:mi> </m:munderover> <m:mrow> <m:msub> <m:mi>a</m:mi> <m:mi>k</m:mi> </m:msub> <m:msup> <m:mi>z</m:mi> <m:mi>k</m:mi> </m:msup> </m:mrow> </m:mstyle> </m:mrow> </m:math> satisfying ( zf ′ ( z )/ f ( z ) – 1) ≺ ψ ( z ). Such functions, like the Ma and Minda classes k=2 of starlike functions, also have nice geometric properties. For these functions, growth and distortion theorems have been established. Further, we obtain bounds for some sharp coefficient functionals and establish the Bohr and Rogosinki phenomenon for the class <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:mi>ℱ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>ψ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> . Non-analytic functions that share properties of analytic functions are known as poly-analytic functions. Moreover, we compute Bohr and Rogosinski’s radius for poly-analytic functions with analytic counterparts in the class <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:mi>ℱ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>ψ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> or classes of Ma-Minda starlike and convex functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要研究了非一价函数的性质,使人联想到一价星形函数理论。设解析函数ψ (z) =∑i = 1∞A i z i, A 1≠0在单位圆盘上是一元的。在形式为f (z) = z +∑k = 2∞a k z k的解析函数f的类中,可以找到非一元函数满足(zf ' (z)/ f (z) - 1) ψ (z)。这样的函数,像星形函数的Ma和Minda类k=2,也有很好的几何性质。对于这些函数,建立了增长定理和畸变定理。进一步,我们得到了某些尖锐系数泛函的界,并建立了类的Bohr和Rogosinki现象。具有解析函数特性的非解析函数称为多解析函数。此外,我们还计算了具有解析对应物的多解析函数的玻尔半径和罗戈辛斯基半径,这些解析对应物在λ (ψ)类或马明达星形函数和凸函数类中。
Theory of Certain Non-Univalent Analytic Functions
ABSTRACT We investigate the non-univalent function’s properties reminiscent of the theory of univalent starlike functions. Let the analytic function ψ(z)=∑i=1∞Aizi , A 1 ≠ 0 be univalent in the unitdisk. Non-univalent functions may be found in the class ℱ(ψ) of analytic functions f of the form f(z)=z+∑k=2∞akzk satisfying ( zf ′ ( z )/ f ( z ) – 1) ≺ ψ ( z ). Such functions, like the Ma and Minda classes k=2 of starlike functions, also have nice geometric properties. For these functions, growth and distortion theorems have been established. Further, we obtain bounds for some sharp coefficient functionals and establish the Bohr and Rogosinki phenomenon for the class ℱ(ψ) . Non-analytic functions that share properties of analytic functions are known as poly-analytic functions. Moreover, we compute Bohr and Rogosinski’s radius for poly-analytic functions with analytic counterparts in the class ℱ(ψ) or classes of Ma-Minda starlike and convex functions.