Dirichlet Series with Periodic Coefficients, Riemann’s Functional Equation, and Real Zeros of Dirichlet L-Functions

Pub Date : 2023-10-01 DOI:10.1515/ms-2023-0084
Takashi Nakamura
{"title":"Dirichlet Series with Periodic Coefficients, Riemann’s Functional Equation, and Real Zeros of Dirichlet <i>L</i>-Functions","authors":"Takashi Nakamura","doi":"10.1515/ms-2023-0084","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we provide Dirichlet series with periodic coefficients that have Riemann’s functional equation and real zeros of Dirichlet L-functions. The details are as follows. Let L ( s, χ ) be the Dirichlet L -function and G ( χ ) be the Gauss sum associated with a primitive Dirichlet character χ (mod q ). We define <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>f</m:mi> <m:mo stretchy=\"false\">(</m:mo> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>χ</m:mi> <m:mo stretchy=\"false\">)</m:mo> <m:mo>:</m:mo> <m:mo>=</m:mo> <m:msup> <m:mi>q</m:mi> <m:mi>s</m:mi> </m:msup> <m:mi>L</m:mi> <m:mo stretchy=\"false\">(</m:mo> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>χ</m:mi> <m:mo stretchy=\"false\">)</m:mo> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mtext> </m:mtext> <m:mtext>i</m:mtext> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>κ</m:mi> <m:mo stretchy=\"false\">(</m:mo> <m:mi>χ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:msup> <m:mi>G</m:mi> <m:mo stretchy=\"false\">(</m:mo> <m:mi>χ</m:mi> <m:mo stretchy=\"false\">)</m:mo> <m:mi>L</m:mi> <m:mo stretchy=\"false\">(</m:mo> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mover accent=\"true\"> <m:mi>χ</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> , where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mover accent=\"true\"> <m:mi>χ</m:mi> <m:mo>¯</m:mo> </m:mover> </m:math> is the complex conjugate of χ and κ ( χ ) := (1 – χ (−1))/2. Then, we prove that f ( s , χ ) satisfies Riemann’s functional equation in Hamburger’s theorem if χ is even. In addition, we show that f ( σ , χ ) ≠ 0 for all σ ≥ 1. Moreover, we prove that f ( σ , χ ) ≠ 0 for all 1/2 ≤ σ < 1 if and only if L ( σ , χ ) ≠ 0 for all 1/2 ≤ σ < 1. When χ is real, all zeros of f ( s , χ ) with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mi>ℜ</m:mi> <m:mo stretchy=\"false\">(</m:mo> <m:mi>s</m:mi> <m:mo stretchy=\"false\">)</m:mo> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> are on the line σ = 1/2 if and only if the generalized Riemann hypothesis for L ( s , χ ) is true. However, f ( s , χ ) has infinitely many zeros off the critical line σ = 1/2 if χ is non-real.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In this paper, we provide Dirichlet series with periodic coefficients that have Riemann’s functional equation and real zeros of Dirichlet L-functions. The details are as follows. Let L ( s, χ ) be the Dirichlet L -function and G ( χ ) be the Gauss sum associated with a primitive Dirichlet character χ (mod q ). We define f ( s , χ ) : = q s L ( s , χ ) + i κ ( χ ) G ( χ ) L ( s , χ ¯ ) , where χ ¯ is the complex conjugate of χ and κ ( χ ) := (1 – χ (−1))/2. Then, we prove that f ( s , χ ) satisfies Riemann’s functional equation in Hamburger’s theorem if χ is even. In addition, we show that f ( σ , χ ) ≠ 0 for all σ ≥ 1. Moreover, we prove that f ( σ , χ ) ≠ 0 for all 1/2 ≤ σ < 1 if and only if L ( σ , χ ) ≠ 0 for all 1/2 ≤ σ < 1. When χ is real, all zeros of f ( s , χ ) with ( s ) > 0 are on the line σ = 1/2 if and only if the generalized Riemann hypothesis for L ( s , χ ) is true. However, f ( s , χ ) has infinitely many zeros off the critical line σ = 1/2 if χ is non-real.
分享
查看原文
周期系数狄利克雷级数,黎曼泛函方程,狄利克雷l函数的实零
本文给出了具有Riemann泛函方程和Dirichlet l -函数实零的周期系数Dirichlet级数。具体情况如下。设L (s, χ)为狄利克雷L函数,G (χ)为与原始狄利克雷字符χ (mod q)相关的高斯和。我们定义f (s, χ):= q s L (s, χ) + i−κ (χ) G (χ) L (s, χ¯),其中χ¯是χ和κ (χ):= (1 - χ(−1))/2的复共轭。然后,我们证明了f (s, χ)在χ为偶数时满足汉堡包定理中的Riemann泛函方程。此外,我们证明了对于所有σ≥1,f (σ, χ)≠0。进一步证明了对于所有1/2≤σ <, f (σ, χ)≠0;1当且仅当L (σ, χ)≠0,对于所有1/2≤σ <1. 当χ为实数时,f (s, χ)与f (s) >均为零;当且仅当L (s, χ)的广义黎曼假设成立时,0在σ = 1/2线上。然而,如果χ是非实数,f (s, χ)在临界线σ = 1/2外有无穷多个零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信