{"title":"Evaluating the effect of A- and B-site cobalt doping on the structural, morphological, dielectric, and non-ohmic properties of CaCu3Ti4O12 ceramics prepared by the hydrothermal method","authors":"El Houcine Lahrar , Hafida Essaoudi","doi":"10.1016/j.materresbull.2024.113182","DOIUrl":"10.1016/j.materresbull.2024.113182","url":null,"abstract":"<div><div>CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> (CCTO), CaCu<sub>3-x</sub>Co<sub>x</sub>Ti<sub>4</sub>O<sub>12</sub> (CCC<sub>x</sub>TO) and CaCu<sub>3</sub>Ti<sub>4-x</sub>Co<sub>x</sub>O<sub>12</sub> (CCTC<sub>x</sub>O) ceramics with <em>x</em> = 0.1 were synthesized by the hydrothermal process at 200 °C for 24 h. The influence of cobalt substitution on the copper and titanium sites in CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> on the structural, morphological, and physical properties was investigated. It was shown through the analysis of X-ray diffractograms of CCTO, CCC<sub>x</sub>TO, and CCTC<sub>x</sub>O compounds that they crystallized in a pure perovskite structure without the presence of secondary phases. The refinement of the spectra using the Rietveld method showed an efficient formation of the crystalline phase of the cubic structure (Im<span><math><mover><mn>3</mn><mo>¯</mo></mover></math></span>), which remains unchanged, with an increase in the unit cell due to the substitution of Co<sup>2+</sup>/Co<sup>3+</sup> in the Cu<sup>2+</sup> and Ti<sup>4+</sup> sites of the CCTO ceramic. Raman spectroscopy was used as a complementary characterization method to XRD in order to detect vibrational bands and highlight any changes in the crystal lattice. SEM results showed that cobalt insertion increased the average grain size. The dielectric properties were studied by complex impedance spectroscopy in a frequency range from 1 kHz to 1 MHz at different temperatures, where the insertion of cobalt in the Cu<sup>2+</sup> and Ti<sup>4+</sup> sites has a significant effect on the permittivity value (ε<sub>r</sub>) and dielectric losses (tanδ). The non-ohmic characteristics showed that the change in grain size due to cobalt incorporation is beneficial to improving the breakdown strength (E<sub>b</sub>) and nonlinear coefficient (α), which can be attributed to the grain boundary properties of the Internal Barrier Layer Capacitor (IBLC) model and the behavior of the Schottky barrier.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113182"},"PeriodicalIF":5.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Albuquerque , Pollyana Trigueiro , Benvinda V. Silva , L. Neves , Luciano C. Almeida , Ramón R. Peña-Garcia
{"title":"A novel RuO₂@ZnO-Alginate-Halloysite composite for the effective degradation of Eosin Yellow dye and Ciprofloxacin drug","authors":"W. Albuquerque , Pollyana Trigueiro , Benvinda V. Silva , L. Neves , Luciano C. Almeida , Ramón R. Peña-Garcia","doi":"10.1016/j.materresbull.2024.113178","DOIUrl":"10.1016/j.materresbull.2024.113178","url":null,"abstract":"<div><div>This research explores the synthesis and application of a novel RuO₂@ZnO-Alginate-Halloysite composite to effectively mitigate Eosin Yellow (EY) and Ciprofloxacin (CIP). The composite exhibited a predominant zinc oxide (ZnO) phase with added ruthenium oxide (RuO₂), alginate, and halloysite components, confirmed through X-ray diffractogram (XRD), Raman, and Fourier Transform Infrared Spectroscopy (FTIR). The addition of RuO₂ did not alter the crystal structure significantly. Still, it impacted the optical properties, with the band gap energies ranging from 3.281 to 3.252 eV, indicating a redshift associated with increased RuO₂ concentration. The composites were tested for EY and CIP photocatalytic degradation under UV light. The composites containing 2 and 3 % of RuO<sub>2</sub> presented impressive photocatalytic performance, achieving up to 82.53 % degradation of CIP and 68.68 % of EY under UV irradiation respectively, highlighting its potential as a robust solution for environmental remediation. The study employed a series of scavenger tests to identify the primary reactive species involved in the photocatalytic degradation of ciprofloxacin drug and eosin yellow dye. The introduction of benzoquinone led to a significant decrease in photocatalytic activity, indicating that superoxide (•O₂⁻) and hydroxyl radicals (•OH) are the dominant species in the photocatalytic degradation of CIP and EY, respectively. The synergistic effects of these reactive species contribute significantly to the photocatalytic performance of the composite material. Finally, the composites showed good recyclability, maintaining substantial degradation performance over multiple cycles. The significance of this study is underscored by the urgent need to find effective methods for removing hazardous compounds from wastewater, a growing concern due to their harmful impact on aquatic ecosystems and human health.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113178"},"PeriodicalIF":5.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hashir P , Parvathy T , Aadil Fayaz Wani , Kulwinder Kaur , P․P Pradyumnan
{"title":"Advancement in the thermoelectric performance of bulk SnSe: GGA+U approach for band gap calculation and strain induced thermal conductivity","authors":"Hashir P , Parvathy T , Aadil Fayaz Wani , Kulwinder Kaur , P․P Pradyumnan","doi":"10.1016/j.materresbull.2024.113181","DOIUrl":"10.1016/j.materresbull.2024.113181","url":null,"abstract":"<div><div>The utilization of thermoelectric technology for harnessing electricity from waste heat has received considerable interest in recent years. Nevertheless, it is essential to develop high-performance thermoelectric materials that exhibit outstanding conversion efficiency to satisfy the world's energy needs. Density Functional Theory (DFT) techniques have gained wide spread recognition as computational simulation methods for determining electronic properties within materials science. The Boltzmann transport equation, used in conjunction with DFT, serves as a valuable tool for predicting the thermoelectric characteristics of various materials. In this investigation, we conducted a comprehensive analysis of the thermoelectric properties of SnSe using the Quantum Espresso software. Generalized gradient approximations were used as the exchange-correlation functional, which approximates the exchange and correlation energies between electrons in many-body problems. The investigation of core electrons employed ultrasoft pseudopotentials. Additionally, the Hubbard correction tool was applied for the final calculation of the band gap. The optimized structure used for the investigation of the thermoelectric properties of bulk SnSe was supported by the BoltzTraP code. Thermal conductivity studies were conducted using Slack's equation, which incorporates both elastic and lattice characteristics. The examination focused on assessing the impact of changes in lattice strain on lattice thermal conductivity. Notably, a significant alteration in the thermoelectric figure of merit was observed due to the applied lattice strain.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113181"},"PeriodicalIF":5.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Li7P3S11 double-layer electrolyte for silicon-based all-solid-state batteries: Interface SiS2-doping","authors":"Nantao Chen, Huiyao Li, Youlan Zou, Zhuoran Ao, Peiguang Li, Yinan Lao, Yu Wan","doi":"10.1016/j.materresbull.2024.113179","DOIUrl":"10.1016/j.materresbull.2024.113179","url":null,"abstract":"<div><div>Sulfide solid electrolytes is indispensable for developing all-solid-state batteries with Si-based anode for its superior ionic conductivity and excellent mechanical ductility. However, the unfriendly interface between sulfide and silicon still leads to poor cycling performance. Herein, we report a SiS<sub>2</sub>-doping Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> (LPS-<em>x</em>Si) membrane sandwiched between Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> electrolyte and Si electrode to form double-layer sulfide electrolyte (LPS-<em>x</em>Si|LPS). LPS-<em>x</em>Si|LPS double-layer contacts well with Si anode and forms Li-Si alloys at the interface to eliminate the adverse side reactions and promote the Li<sup>+</sup> transmission of the interface. The LPS-2Si|LPS possesses the highest ionic conductivity of 5.4 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C. LiIn | LPS-2Si|LPS | LiIn cell works steadily for more than 1000 h at 30 ℃ with 0.1 mA cm<sup>−2</sup>. The assembled 99 wt.% Si | LPS-2Si|LPS | LiIn cell exhibits an initial discharge capacity of 2208.7 mAh g<sup>−1</sup> and remains 339.5 mAh g<sup>−1</sup> after 100 cycles.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113179"},"PeriodicalIF":5.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junyi Tan, Bo Jing, Qiuju Li, Cong Liang, Xiao Guo
{"title":"Electrochemical behavior of tantalum ion in LiF-NaF-K2TaF7 molten salt system","authors":"Junyi Tan, Bo Jing, Qiuju Li, Cong Liang, Xiao Guo","doi":"10.1016/j.materresbull.2024.113180","DOIUrl":"10.1016/j.materresbull.2024.113180","url":null,"abstract":"<div><div>It is of great significance to clarify the electrochemical behavior of Ta<sup>5+</sup> in LiF-NaF-K<sub>2</sub>TaF<sub>7</sub> molten salt systems for the preparation of tantalum metal by molten salt electrodeposition. The aim of this work was to explore the reaction steps and behavior of the reduction of metal Ta from Ta<sup>5+</sup> in fluorine molten salt by electrochemical method. The cyclic voltammetry, square wave voltammetry, chronopotentiometry were used to determine the reduction steps of Ta<sup>5+</sup>. The results showed that there were two reduction steps which the first reduction step R<sub>1</sub> was <span><math><mrow><msubsup><mtext>TaF</mtext><mn>7</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup><mo>+</mo><mn>2</mn><msup><mrow><mi>e</mi></mrow><mo>−</mo></msup><mi>⇌</mi><mtext>Ta</mtext><msub><mi>F</mi><mn>3</mn></msub><mo>+</mo><mn>4</mn><msup><mrow><mi>F</mi></mrow><mo>−</mo></msup></mrow></math></span> and the second reduction step R<sub>2</sub> was <span><math><mrow><mtext>Ta</mtext><msub><mi>F</mi><mn>3</mn></msub><mo>+</mo><mn>3</mn><msup><mrow><mi>e</mi></mrow><mo>−</mo></msup><mo>→</mo><mtext>Ta</mtext><mo>+</mo><mn>3</mn><msup><mrow><mi>F</mi></mrow><mo>−</mo></msup></mrow></math></span>. SEM, XRD and EDS results showed that the reduction product of Ta<sup>5+</sup> in molten salt is Ta and the tantalum atom was selectively deposited and grew on the (200) crystal plane in priority.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113180"},"PeriodicalIF":5.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SnS2/ZIF-67 nanocomposite: A novel bifunctional, highly efficient, and reusable photocatalyst for enhanced visible-light-assisted biodiesel production and degradation of tinidazole","authors":"Vishal Gadore, Soumya Ranjan Mishra, Md. Ahmaruzzaman","doi":"10.1016/j.materresbull.2024.113177","DOIUrl":"10.1016/j.materresbull.2024.113177","url":null,"abstract":"<div><div>Herein, a novel bifunctional, highly efficient and reusable visible-light active SnS<sub>2</sub>/ZIF-67 nanocomposite was fabricated for improved photodegradation of tinidazole (TDZ) and photocatalytic biodiesel production from soyabean oil. An improved photocatalytic performance was ascribed to the enhanced separation of charges and narrow-bandgap energy of the photocatalyst by synergistic- interaction between SnS<sub>2</sub> and ZIF-67. Within 60 min of irradiation, 96.31± 1.62 % of 15 ppm TDZ could be removed by 0.3 mM H<sub>2</sub>O<sub>2</sub>, 0.4 g/L of prepared photocatalyst under mild-conditions. The appraisal of photocatalytic activity of SnS<sub>2</sub>/ZIF-67 nanocomposite for photocatalytic degradation of TDZ under actual wastewater conditions was studied by introducing various co-existing ions and water matrices. The SnS<sub>2</sub>/ZIF-67 photocatalyst showed biodiesel yield of 91.25 ± 1.58 % at photocatalyst loading of 3 wt% and methanol-to-oil ratio of 10:1 within 50 min of light-irradiation. The current research highlighted the potential of metal-sulphides for water remediation and biodiesel production under light-irradiation.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"183 ","pages":"Article 113177"},"PeriodicalIF":5.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interfacial polarization of different MnO2 crystal anchored on Ti3AlC2 to enhance the microwave absorption","authors":"Zhouhao Peng , Zitong Wang , Chenglong Lei","doi":"10.1016/j.materresbull.2024.113176","DOIUrl":"10.1016/j.materresbull.2024.113176","url":null,"abstract":"<div><div>Hierarchical MAX phase materials constructed with different MnO<sub>2</sub> crystal were designed for microwave absorbers. Different MnO<sub>2</sub> crystal loaded on Ti<sub>3</sub>AlC<sub>2</sub> had an abundant and differentiated interfaces. Compactly loaded on the surface of Ti<sub>3</sub>AlC<sub>2</sub>, α-MnO<sub>2</sub>/β-MnO<sub>2</sub> was a nanorod and δ-MnO<sub>2</sub> was a flower, but ε-MnO<sub>2</sub> was spherical separating from the Ti<sub>3</sub>AlC<sub>2</sub>. Relying on the synergistic effects of the interfacial and defect dipole polarizations, the optimal RL of Ti<sub>3</sub>AlC<sub>2</sub>@α-MnO<sub>2</sub> and Ti<sub>3</sub>AlC<sub>2</sub>@β-MnO<sub>2</sub> hybrids were -46.5 dB at 3.6 mm and -44 dB at 2.7 mm, respectively. The RL of Ti<sub>3</sub>AlC<sub>2</sub>@δ-MnO<sub>2</sub> hybrid was regulated by the matching thickness (-46.8 dB at 6.1 mm and -20 dB at 2 mm) and the broad EAB is 4.84 GHz. However, the RL of Ti<sub>3</sub>AlC<sub>2</sub>@ε-MnO<sub>2</sub> hybrid cannot reach -10 dB within the thickness of 1.0–5.0 mm, demonstrating the worst attenuation performance. This work offers an opportunity to elucidate the relationship between heterogeneous interface and microwave absorption.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113176"},"PeriodicalIF":5.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L.A. Ramajo , D. Smirnoff , F. Schipani , R. Martín , E. Villegas , M. Sousa Góes , F. Martín , R. Parra
{"title":"Electrical response and microstructure development in zinc oxide films sprayed from ethanolic solutions of different salts","authors":"L.A. Ramajo , D. Smirnoff , F. Schipani , R. Martín , E. Villegas , M. Sousa Góes , F. Martín , R. Parra","doi":"10.1016/j.materresbull.2024.113174","DOIUrl":"10.1016/j.materresbull.2024.113174","url":null,"abstract":"<div><div>Zinc oxide thin films were grown by spray-pyrolysis on glass substrates from ethanolic solutions of zinc nitrate, zinc chloride and zinc acetate. Different microstructures were observed in the films prepared with the three salts used, which showed significant differences with respect to films prepared from aqueous solutions of the same salts. Polyethyleneglycol was also used as a pore-generating agent in order to modify the microstructure of denser films increasing the degree of porosity. The electrical response of the films at room temperature was evaluated under 365 nm ultraviolet light, and in the presence of hydrogen, separately. The microstructures developed in ZnO films by using different zinc salts is correlated with the measured electrical properties.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113174"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Buzaina Moossa , Jeffin James Abraham , Abdul Moiz Ahmed , Ramazan Kahraman , Siham Al-Qaradawi , R.A. Shakoor
{"title":"Synergistic effect of NASICON Na3V2(PO4)2F3 and 2D MXene for high-performance symmetric Sodium-ion batteries","authors":"Buzaina Moossa , Jeffin James Abraham , Abdul Moiz Ahmed , Ramazan Kahraman , Siham Al-Qaradawi , R.A. Shakoor","doi":"10.1016/j.materresbull.2024.113173","DOIUrl":"10.1016/j.materresbull.2024.113173","url":null,"abstract":"<div><div>Sodium fluorophosphate-based Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> (NVPF) cathode materials have been widely analyzed in Sodium-ion batteries (SIB) owing to their high energy density and high working voltage. However, the low electronic conductivity of NVPF is a factor hindering their efficient use. To enhance the electronic conductivity of NVPF, in this work, a porous Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> and a 2D Ti<sub>3</sub>C<sub>2</sub> <strong>-</strong>based MXene nanocomposit<strong>e</strong> was synthesized using a facile sol-gel method. The NVPF<strong>,</strong> with the presence of two active redox couples, is a suitable choice for symmetric batteries. The NVPF + 2D MXene nanocomposite was analyzed for its structural and thermal characteristics<strong>,</strong> and a symmetric cell prepared from them was investigated for its electrochemical characteristics. Structural analysis of the materials developed indicates that the MXene addition has not altered the crystal structure of the NVPF. A remarkable improvement in the electrochemical performance of NVPF in the sodium symmetric cell is noticed<strong>,</strong> as indicated by its high specific discharge capacity of 92mAhg<sup>-1</sup> at 1C for the MXene-incorporated composite structures. This improvement in electrochemical behaviour is confirmed in the rate capability curves, GCD curves, and GITT curves. The diffusion coefficient values obtained from GITT analysis showed improved kinetics in the synthesized material due to the MXene incorporation. The calculated values of the diffusion coefficient of Na<sup>+</sup>confirms the accelerated kinetics of Na<sup>+</sup> ion migration during the intercalation/de-intercalation process in the MXene 5wt% nanocomposites, with a value of 9.57 × 10<sup>–9</sup> cm<sup>2</sup>s<sup>-1</sup> when compared to 4. 14 × 10<sup>–9</sup> cm<sup>2</sup>s<sup>-1</sup> for the pristine sample.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113173"},"PeriodicalIF":5.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photocatalytic performance of Ni-Al LDH @Ag2XO4 (X = Cr, Mo, and W) nanocomposites under visible light","authors":"Ghazal Salehi , Mojtaba Bagherzadeh , Mojtaba Hajilo , Davood Taherinia , Soheil Sojdeh , Moein Safarkhani , Yun Suk Huh","doi":"10.1016/j.materresbull.2024.113171","DOIUrl":"10.1016/j.materresbull.2024.113171","url":null,"abstract":"<div><div>The contamination of water sources from dye discharge poses a significant environmental challenge. This study addresses this issue by synthesizing binary composites of Ni-Al LDH@Ag<sub>2</sub>XO<sub>4</sub> (with X=Cr, Mo, and W). The main goal is to increase the separation of charge carriers to boost the efficiency of photocatalysis. The prepared samples were analyzed using FT-IR, FE-SEM, EDS, FE-TEM, XRD, UV–Vis DRS, and XPS techniques. Observations revealed a notable increase in MB degradation through photocatalysis under a 150 W mercury lamp in presence of Ni-Al LDH@Ag<sub>2</sub>CrO<sub>4</sub> compared to individual samples, Ni-Al LDH and Ag<sub>2</sub>CrO<sub>4</sub>. At pH= 11, 0.5 g of Ni-Al LDH@Ag<sub>2</sub>CrO<sub>4</sub> shows the highest activity (100 %) for the photodegradation of MB. The absorption edge of Ni-Al LDH@Ag<sub>2</sub>CrO<sub>4</sub> (1.69 eV) has increased compared to that of Ni-Al LDH (2.53 eV), which increases the light absorption capacity. Moreover, the synergistic effect of Ni-Al LDH and Ag<sub>2</sub>CrO<sub>4</sub> increases photocatalytic activity by reducing electron-hole recombination. The proposed Z-Scheme mechanism confirms effective charge separation and increased photocatalytic efficiency.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113171"},"PeriodicalIF":5.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}