Materials Research Bulletin最新文献

筛选
英文 中文
Structured-porous-enhanced mechanoluminescence of ZnS:Cu/PDMS elastomer ZnS:Cu/PDMS 弹性体的结构化多孔增强机械发光
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-13 DOI: 10.1016/j.materresbull.2024.113099
{"title":"Structured-porous-enhanced mechanoluminescence of ZnS:Cu/PDMS elastomer","authors":"","doi":"10.1016/j.materresbull.2024.113099","DOIUrl":"10.1016/j.materresbull.2024.113099","url":null,"abstract":"<div><p>Mechanoluminescence (ML) exhibits distinctive mechano-optical response characteristics, rendering it promising for various applications. This study presents a porous ML elastomer capable of high intensity luminescence and extended sensitive dimension, which is prepared by molding the composite of luminescent particles (ZnS:Cu) and polydimethylsiloxane (PDMS) within a structured-porous template. With quantitative measurements and simulations, the enhanced luminescence can be attributed to the effect of stress concentration and the enhancement of contact electrification induced by the pore structure. Compared to the dense structure, the luminescence of the porous structure is greatly enhanced (more than 10 times!) and sensitive to compressing, which can promisingly expand ML applications from unidirectional stretching (2D) to three-dimensional (3D).</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004306/pdfft?md5=75305b6f23bd14c4fe14126c5ce9d30c&pid=1-s2.0-S0025540824004306-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO nanostructure as an efficient heat spreader in electronic packaging 氧化锌纳米结构作为电子封装中的高效散热器
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-11 DOI: 10.1016/j.materresbull.2024.113094
{"title":"ZnO nanostructure as an efficient heat spreader in electronic packaging","authors":"","doi":"10.1016/j.materresbull.2024.113094","DOIUrl":"10.1016/j.materresbull.2024.113094","url":null,"abstract":"<div><div>The purpose of this study is to reduce the material and increase the heat transfer performance for efficient thermal management in electronic devices. Consequently, various types of ZnO nanostructures were synthesized using various zinc acetate dihydrate (ZAD) concentrations (0.001 M, 0.01 M &amp; 0.1 M) and the number of layers (6, 7 &amp; 8), followed by annealing at 350 °C for 1 hr. The various nanostructures such as nano-walls (NWs), nano-leaves (NLs), and nanoflakes (NFs) were observed due to the formation of more aggregation of ZnO nucleation centers at various ZAD concentrations. Surface analysis showed decreased roughness (0.168 to 0.14 μm) with increased concentration and increased roughness (0.14 to 0.32 μm) with an increased number of layers. Among the nanostructures produced, the ZnO NW structure from 0.1 M solution with 7 layers effectively conducted the heat by observing a low LED temperature of 34.48 °C at 0.8 W.</div><div>The surface quality was examined with an Atomic Force Microscope (AFM) and showed decreased roughness from 0.168 μm to 0.14 μm with increased concentration and increased roughness from 0.14 μm to 0.32 μm with an increased number of layers. The heat-spreading behavior of each nanostructure was evaluated by an infrared (IR) thermal imaging camera and displayed the surface-dependent heat distribution concerning the Zn concentration, number of layers, and testing current. Among the nanostructures produced, the ZnO NW structure prepared using 0.1 M ZAD solution with 7 layers effectively conducted the heat via through- and in-plane direction, which was proved by observing a low LED temperature of 34.48 °C at 0.8 W. Overall, ZnO nanostructures, especially NWs, offer promising potential for thermal management due to their unique properties at high power density. Consequently, ZnO nanostructures would be considered thermally efficient heat spreaders in electronic devices.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced electrochemical properties of MnFe2O4/reduced graphene oxide nanocomposite with a potential for supercapacitor application 增强 MnFe2O4/还原氧化石墨烯纳米复合材料的电化学性能,使其有望应用于超级电容器
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-10 DOI: 10.1016/j.materresbull.2024.113093
{"title":"Enhanced electrochemical properties of MnFe2O4/reduced graphene oxide nanocomposite with a potential for supercapacitor application","authors":"","doi":"10.1016/j.materresbull.2024.113093","DOIUrl":"10.1016/j.materresbull.2024.113093","url":null,"abstract":"<div><p>A single-step solvothermal method has been employed to synthesize MnFe<sub>2</sub>O<sub>4</sub> composite nanoparticles where graphene sheets were incorporated into spherical MnFe<sub>2</sub>O<sub>4</sub> nanoparticles of size ∼57 nm. The synthesized MnFe<sub>2</sub>O<sub>4</sub>/reduced graphene oxide (rGO) composite exhibits enhanced electrochemical properties due to its improved porosity, surface area, and conductivity. FTIR, Raman, and XPS studies confirmed the effective reduction of GO and the successful formation of MnFe<sub>2</sub>O<sub>4</sub>/rGO composite. When employed as an electrochemical cell electrode, the MnFe<sub>2</sub>O<sub>4</sub>/rGO composite showed an enhanced specific capacitance of 253 F g<sup>−1</sup>, as opposed to 133 F g<sup>−1</sup> for the bare nanoparticles. The composite attains significantly improved energy density of 76.06 Wh kg<sup>−1</sup> and power density of 7.49 kW kg<sup>−1</sup> at current density of 10 A g<sup>−1</sup>. The unification of 2D graphene and MnFe<sub>2</sub>O<sub>4</sub> nanoparticles yields enhanced electrochemical performance and an outstanding 96 % cyclic stability (after 5000 cycles), which offers a viable approach for developing better supercapacitor electrode materials in the future.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004240/pdfft?md5=34185f999ca59c73f998356a9a575219&pid=1-s2.0-S0025540824004240-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of biochar assisted S-scheme of CeO2/g-C3N4 with enhanced photoreduction CO2 to CO activity and selectivity 构建生物炭辅助的 CeO2/g-C3N4 S 型结构,提高光生化 CO2 到 CO 的活性和选择性
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-07 DOI: 10.1016/j.materresbull.2024.113085
{"title":"Construction of biochar assisted S-scheme of CeO2/g-C3N4 with enhanced photoreduction CO2 to CO activity and selectivity","authors":"","doi":"10.1016/j.materresbull.2024.113085","DOIUrl":"10.1016/j.materresbull.2024.113085","url":null,"abstract":"<div><p>The multi-interface contacted S-scheme photocatalyst was used for CO<sub>2</sub> reduction in this research. A hybrid nanostructures catalyst was constructed using g-C<sub>3</sub>N<sub>4</sub> nanosheet, oxidized CeO<sub>2</sub> nanoparticles, and biochar (BIO, cattail-derived). The g-C<sub>3</sub>N<sub>4</sub>-BIO/CeO<sub>2</sub> catalyst exhibited high selectivity (&gt; 95 %) in converting CO<sub>2</sub> to CO in a gas-solid-liquid phase CO<sub>2</sub> reduction system. Theoretical and experimental evidence suggests that the multi-interface and interfacial internal electric field (IEF) play a crucial role in enhancing electron transfer and redox ability in CO<sub>2</sub> reduction processes. Ce<sup>4+</sup> species in CeO<sub>2</sub> have the capability to donate two electrons, facilitating the two-electron reduction process involved in the transformation of CO<sub>2</sub> to CO. Additionally, Ce<sup>4+</sup> in CeO<sub>2</sub> acted as an electron trapping agent and could be reduced to Ce<sup>3+</sup> ion after trapping electrons, which facilitated the separation process of photogenerated carriers inside CeO<sub>2</sub>. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) demonstrated that COOH* intermediate played a key role as the rate determining step in the overall CO<sub>2</sub> photoreduction to CO. This investigation will contribute to the development and application of new and environmentally friendly BIO-based S-scheme photocatalysts.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004161/pdfft?md5=f8f8aadaec1450116be6519e7f3cd8b2&pid=1-s2.0-S0025540824004161-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid crystalline elastomers/glycerol-based solid polymer electrolytes with shape memory properties for Zn-ion battery applications 具有形状记忆特性的液晶弹性体/甘油基固体聚合物电解质在锰离子电池中的应用
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-07 DOI: 10.1016/j.materresbull.2024.113084
{"title":"Liquid crystalline elastomers/glycerol-based solid polymer electrolytes with shape memory properties for Zn-ion battery applications","authors":"","doi":"10.1016/j.materresbull.2024.113084","DOIUrl":"10.1016/j.materresbull.2024.113084","url":null,"abstract":"<div><p>A new type of solid polymer electrolytes (SPEs) for zinc-ion batteries was fabricated by combining liquid crystalline elastomer (LCE) with glycerol. LCEs were selected for their flexibility and low transition temperatures. However, these materials exhibit a degree of crystallinity at ambient temperatures, limiting high ionic conductivity. Glycerol was introduced as both an antinucleating agent and plasticiser to reduce crystallinity and increase flexibility of this system. As a result, adding 15 wt% glycerol enhanced the ionic conductivity to 1.87 × 10<sup>−5</sup> S cm<sup>−1</sup> while maintaining stable charge-discharge cycles for 200 hrs. Besides, this modification reduced the nematic-isotropic transition temperature and storage modulus from 78 °C to 66 °C and 4.7 MPa to 0.6 MPa, respectively. Furthermore, these materials indicated excellent shape fixity and shape recovery of 98.3 % and 99.6 %. The successful fabrication of this LCE/glycerol system highlights its potential for developing shape memory SPE materials tailored for Zn-ion battery applications.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002554082400415X/pdfft?md5=225f9e740888063e03ba2c9ea2d911c2&pid=1-s2.0-S002554082400415X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of polyaniline/lanthanum niobate nanocomposites by in situ polymerization for the detection of dopamine and uric acid 利用原位聚合法合成用于检测多巴胺和尿酸的聚苯胺/铌酸镧纳米复合材料
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-06 DOI: 10.1016/j.materresbull.2024.113083
{"title":"Synthesis of polyaniline/lanthanum niobate nanocomposites by in situ polymerization for the detection of dopamine and uric acid","authors":"","doi":"10.1016/j.materresbull.2024.113083","DOIUrl":"10.1016/j.materresbull.2024.113083","url":null,"abstract":"<div><p>A novel 2D layered nanocomposite was synthesized by <em>in situ</em> polymerization by incorporating aniline into the HLaNb<sub>2</sub>O<sub>7</sub> host matrix. This innovative nanocomposite uniquely combines the electroactive properties of polyaniline with the structural stability and ion-exchange capabilities of lanthanum niobate, resulting in a material with superior electrochemical performance. Characterization of the composites was performed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Electrochemical assays revealed that the PANI/LaNb<sub>2</sub>O<sub>7</sub> nanocomposite modified glassy carbon electrode could concurrently detect dopamine and uric acid, respectively. The detection limits were determined to be 0.04 μM for DA and 0.61 μM for UA. The enhanced sensitivity, selectivity, and stability of this nanocomposite make it a promising candidate for advanced electrochemical sensors, particularly in biomedical applications where precise detection of biomolecules is crucial.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004148/pdfft?md5=dfc4fb404a70f7389d9d9f07860e09b1&pid=1-s2.0-S0025540824004148-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A humidity tolerance and room temperature carbon soot@ZIF-71 sensor for toluene vapour detection 用于检测甲苯蒸汽的耐湿性室温碳烟@ZIF-71 传感器
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-05 DOI: 10.1016/j.materresbull.2024.113076
{"title":"A humidity tolerance and room temperature carbon soot@ZIF-71 sensor for toluene vapour detection","authors":"","doi":"10.1016/j.materresbull.2024.113076","DOIUrl":"10.1016/j.materresbull.2024.113076","url":null,"abstract":"<div><p>The Solid-state chemiresistive gas sensing devices are the desirable recruit to detect toxic gases and volatile organic compounds; however, the growth of real-life applications of these sensors is poor due to their drawbacks, including high working temperature, showing poor responses during moderate to high humidity, and poor selectivity towards the gas of interest. In this work, we synthesised zeolitic imidazolate framework (ZIF-71), carbon soot (CNPs) and CNPs@ZIF-71 composite and were successfully characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The ZIF-71, CNPs and CNPs@ZIF-71 composites are used to fabricate the sensors to detect toluene, ethanol, mesitylene, diethyl ether and acetonitrile vapours at room temperature. The ZIF-71 did not respond to any of the tested VOCs at room temperature; however, the CNPs sensor showed some little response to the tested VOCs. However, the linear response was not observed as the analyte concentration increased. However, the CNPs@ZIF-71 showed excellent response and sensitivity towards the toluene vapour and less sensitivity towards mesitylene, diethyl ether, acetonitrile and ethanol vapours. ZIF-71 synergistically improves CNPs sensing performances on toluene vapour detection. The CNPs@ZIF-71 sensor was found to be highly resistive during the detection of toluene vapour. The calculated limit for the detection of toluene vapour on the CNPs@ZIF-71 composite sensor was 518 ppb. In situ, FTIR coupled with LCR meter online analysis was done to study the sensing mechanism, and it was found that toluene vapour detection on sensor 3 undergoes total deep oxidation to form H<sub>2</sub>O and CO<sub>2</sub> as by-products.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004070/pdfft?md5=215c2b53510e64f80014dd62df9a3a53&pid=1-s2.0-S0025540824004070-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-step densification and magneto-dielectric response of Y3Fe5O12–EDTA composites for microwave substrates 用于微波基底的 Y3Fe5O12-EDTA 复合材料的单步致密化和磁介质响应
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-04 DOI: 10.1016/j.materresbull.2024.113080
{"title":"Single-step densification and magneto-dielectric response of Y3Fe5O12–EDTA composites for microwave substrates","authors":"","doi":"10.1016/j.materresbull.2024.113080","DOIUrl":"10.1016/j.materresbull.2024.113080","url":null,"abstract":"<div><p>Numerous studies have been conducted over the past few decades on energy-efficient, sustainable, and cost-effective materials and technologies for consumer electronics. Among such materials, ferrite-based compounds are expected to play a significant role in the miniaturization of circuits. However, densification of such materials is a very challenging problem. The cold sintering process (CSP) has recently been found as an alternative strategy for producing advanced materials, enabling their densification at low temperatures. The present work uses different volume fractions of Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> with EDTA to create a dense composite system. Here, we report the synthesis of composites of the formula (1 –<em>x</em>)Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>-<em>x</em>EDTA (<em>x</em> = 0.2, 0.3, 0.4, 0.5) through CSP. These composites possess a permittivity of 6.4–7 combined with a loss tangent of 10<sup>–2</sup>. Moreover, for the 0.5 EDTA composite, ε<sub>r</sub> of 5.7 and tanδ of 0.01 are obtained at 10 GHz, suggesting the prepared composites' potential for substrate applications.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004112/pdfft?md5=a33f24d8a0c82009e576944109be36d5&pid=1-s2.0-S0025540824004112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the luminescent properties of Fe3+ in CaAl4O7 by co-doping with Bi3+ ions 通过共掺杂 Bi3+ 离子改善 CaAl4O7 中 Fe3+ 的发光特性
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-04 DOI: 10.1016/j.materresbull.2024.113081
{"title":"Improving the luminescent properties of Fe3+ in CaAl4O7 by co-doping with Bi3+ ions","authors":"","doi":"10.1016/j.materresbull.2024.113081","DOIUrl":"10.1016/j.materresbull.2024.113081","url":null,"abstract":"<div><p>In the framework of luminescent transition metal ions-doped phosphors for near-infrared (NIR) lighting, Fe<sup>3+</sup>-activated phosphors have been recently demonstrated to be a potential alternative to the most common Cr<sup>3+</sup> and Ni<sup>2+</sup>-based NIR materials. However, this family of phosphors still suffer from low absorption efficiency and severe thermal quenching. This study investigates the effect of Bi<sup>3+</sup> ion concentration on the spectroscopic features of Fe<sup>3+</sup> ions in CaAl<sub>4</sub>O<sub>7</sub>:Fe<sup>3+</sup>, Bi<sup>3+</sup> system. The presence of the <sup>1</sup>S<sub>0</sub>→<sup>1</sup>P<sub>1</sub> transition band in Fe<sup>3+</sup> PLE spectra indicates the Bi<sup>3+</sup>→Fe<sup>3+</sup> energy transfer leading to a corresponding increase in luminescence intensity of Fe<sup>3+</sup> ions by over 30-fold compared to Fe<sup>3+</sup>-singly doped sample. High Bi<sup>3+</sup> concentrations also quench Bi<sup>3+</sup> ion luminescence, improving NIR emission purity. Additionally, the presence of Bi<sup>3+</sup> ions enhances Fe<sup>3+</sup> ion luminescence stability by delaying the thermal depopulation, as evidenced by a T<sub>50</sub> shift from 323 K to 393 K. Overall, co-doping CaAl<sub>4</sub>O<sub>7</sub>:Fe<sup>3+</sup> with Bi<sup>3+</sup> ions expands excitation spectra, boosts luminescence intensity, and enhances the thermal stability.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004124/pdfft?md5=6dbf683eb778c3a1c84e119be933e6e6&pid=1-s2.0-S0025540824004124-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silicon/graphite/amorphous carbon composites as anode materials for lithium-ion battery with enhanced electrochemical performances 硅/石墨/无定形碳复合材料作为锂离子电池负极材料可提高电化学性能
IF 5.3 3区 材料科学
Materials Research Bulletin Pub Date : 2024-09-04 DOI: 10.1016/j.materresbull.2024.113082
{"title":"Silicon/graphite/amorphous carbon composites as anode materials for lithium-ion battery with enhanced electrochemical performances","authors":"","doi":"10.1016/j.materresbull.2024.113082","DOIUrl":"10.1016/j.materresbull.2024.113082","url":null,"abstract":"<div><p>Silicon has emerged as one of the most promising anode materials for next-generation lithium-ion batteries due to its exceptional specific capacity and abundant resources. However, its widespread application is hindered by structural deformability and low intrinsic conductivity. By strategically integrating a conductive carbon matrix with silicon, it becomes feasible and efficient to enhance the electrical conductivity of silicon and accommodate the stress-induced volume expansion during battery operation. In this study, a series of silicon/graphite/amorphous carbon (Si/G/C) composites were prepared using mechanical milling and carbothermal reduction. The study focused on two main aspects: the effect of the ratio of micro-sized silicon to flake graphite on the properties of the composite and the compatibility of different-scale silicon particles (micro-sized silicon and nano-sized silicon) and different kinds of natural graphite (flake graphite and cryptocrystalline graphite). The results reveal that when micro-sized silicon and flake graphite are combined, the graphite is fragmented more thoroughly, resulting in smoother surfaces and reduced aggregation of secondary particles. The composites with a mass ratio of 7:3 micro-sized silicon to flake graphite have the smallest specific surface area and pore size, homogeneous distribution, and stable structure. This exceptional carbon-to-silicon ratio endows the Si/G/C composite with rapid reaction kinetics, enabling a specific discharge capacity of 854.1 mAh g<sup>-1</sup> after 200 cycles at 1A g<sup>-1</sup>. The findings offer valuable insights into the design and optimization of silicon-based anode materials for next-generation lithium-ion batteries.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004136/pdfft?md5=dedad225d35ea5f906f7cc77d7fcef9c&pid=1-s2.0-S0025540824004136-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信