A stable and reusable Z-scheme ZnO/Ag2CO3 photocatalyst for efficient degradation of emerging water pollutants

IF 5.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ping Huang , Wei Feng , Wenhui Li , Yuquan Zhuo , Ziwen Yang , Shuo Yang , Donglai Han
{"title":"A stable and reusable Z-scheme ZnO/Ag2CO3 photocatalyst for efficient degradation of emerging water pollutants","authors":"Ping Huang ,&nbsp;Wei Feng ,&nbsp;Wenhui Li ,&nbsp;Yuquan Zhuo ,&nbsp;Ziwen Yang ,&nbsp;Shuo Yang ,&nbsp;Donglai Han","doi":"10.1016/j.materresbull.2025.113663","DOIUrl":null,"url":null,"abstract":"<div><div>We report ZnO/Ag<sub>2</sub>CO<sub>3</sub> (Z/AC) p–n heterojunctions synthesized via a facile two-step method to enable Z-scheme charge transfer for enhanced photocatalysis performance. Integrated SEM, TEM, XRD, FT-IR, XPS and BET analyses show that ∼5 µm wurtzite-ZnO nanospindles (NSs) are uniformly decorated with 50–200 nm monoclinic-Ag<sub>2</sub>CO<sub>3</sub> nanoparticles (NPs), forming a rough, mesoporous heterojunction whose specific surface area increases from 1.82 to 13.78 m<sup>2</sup> g⁻¹. This microarchitecture narrows the optical band-gap from 3.09 to 2.88 eV, suppresses photoluminescence by ∼65.1 %, triples the transient photocurrent, and delivers markedly enhanced photocatalytic activity. The Z/AC-4 heterojunction demonstrates the highest photocatalytic activity, achieving 97.4 % for tetracycline (TC). Scavenger experiments reveal hydroxyl radicals (·OH), holes (h⁺) and superoxide radicals (·O<sub>2</sub><sup>⁻</sup>) as key contributors, with ·OH dominant; Notably, the Z/AC-4 photocatalyst maintains 73.4 % TC degradation efficiency after five cycles, demonstrating excellent structural stability and recyclability. This work provides mechanistic insight into Z-scheme-driven photocatalysis.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"193 ","pages":"Article 113663"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825003708","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report ZnO/Ag2CO3 (Z/AC) p–n heterojunctions synthesized via a facile two-step method to enable Z-scheme charge transfer for enhanced photocatalysis performance. Integrated SEM, TEM, XRD, FT-IR, XPS and BET analyses show that ∼5 µm wurtzite-ZnO nanospindles (NSs) are uniformly decorated with 50–200 nm monoclinic-Ag2CO3 nanoparticles (NPs), forming a rough, mesoporous heterojunction whose specific surface area increases from 1.82 to 13.78 m2 g⁻¹. This microarchitecture narrows the optical band-gap from 3.09 to 2.88 eV, suppresses photoluminescence by ∼65.1 %, triples the transient photocurrent, and delivers markedly enhanced photocatalytic activity. The Z/AC-4 heterojunction demonstrates the highest photocatalytic activity, achieving 97.4 % for tetracycline (TC). Scavenger experiments reveal hydroxyl radicals (·OH), holes (h⁺) and superoxide radicals (·O2) as key contributors, with ·OH dominant; Notably, the Z/AC-4 photocatalyst maintains 73.4 % TC degradation efficiency after five cycles, demonstrating excellent structural stability and recyclability. This work provides mechanistic insight into Z-scheme-driven photocatalysis.

Abstract Image

一种稳定且可重复使用的Z-scheme ZnO/Ag2CO3光催化剂,用于高效降解新出现的水污染物
我们报道了通过简单的两步法合成ZnO/Ag2CO3 (Z/AC) p-n异质结,以实现Z-scheme电荷转移以增强光催化性能。SEM, TEM, XRD, FT-IR, XPS和BET分析表明,~ 5µm的纤锌矿氧化锌纳米纺锤(NSs)被50-200 nm的单斜ag2co3纳米颗粒(NPs)均匀修饰,形成一个粗糙的介孔异质结,其比表面积从1.82增加到13.78 m2 g⁻¹。这种微结构将光学带隙从3.09缩小到2.88 eV,抑制了约65.1%的光致发光,使瞬态光电流增加了三倍,并显著增强了光催化活性。Z/AC-4异质结对四环素(TC)的光催化活性最高,达到97.4%。清道夫实验显示,羟基自由基(·OH)、空穴(h⁺)和超氧自由基(·O2⁻)是主要贡献者,其中·OH占优势;值得注意的是,经过5次循环后,Z/AC-4光催化剂的TC降解效率保持在73.4%,具有良好的结构稳定性和可回收性。这项工作为z -图式驱动的光催化提供了机理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信