Ping Huang , Wei Feng , Wenhui Li , Yuquan Zhuo , Ziwen Yang , Shuo Yang , Donglai Han
{"title":"A stable and reusable Z-scheme ZnO/Ag2CO3 photocatalyst for efficient degradation of emerging water pollutants","authors":"Ping Huang , Wei Feng , Wenhui Li , Yuquan Zhuo , Ziwen Yang , Shuo Yang , Donglai Han","doi":"10.1016/j.materresbull.2025.113663","DOIUrl":null,"url":null,"abstract":"<div><div>We report ZnO/Ag<sub>2</sub>CO<sub>3</sub> (Z/AC) p–n heterojunctions synthesized via a facile two-step method to enable Z-scheme charge transfer for enhanced photocatalysis performance. Integrated SEM, TEM, XRD, FT-IR, XPS and BET analyses show that ∼5 µm wurtzite-ZnO nanospindles (NSs) are uniformly decorated with 50–200 nm monoclinic-Ag<sub>2</sub>CO<sub>3</sub> nanoparticles (NPs), forming a rough, mesoporous heterojunction whose specific surface area increases from 1.82 to 13.78 m<sup>2</sup> g⁻¹. This microarchitecture narrows the optical band-gap from 3.09 to 2.88 eV, suppresses photoluminescence by ∼65.1 %, triples the transient photocurrent, and delivers markedly enhanced photocatalytic activity. The Z/AC-4 heterojunction demonstrates the highest photocatalytic activity, achieving 97.4 % for tetracycline (TC). Scavenger experiments reveal hydroxyl radicals (·OH), holes (h⁺) and superoxide radicals (·O<sub>2</sub><sup>⁻</sup>) as key contributors, with ·OH dominant; Notably, the Z/AC-4 photocatalyst maintains 73.4 % TC degradation efficiency after five cycles, demonstrating excellent structural stability and recyclability. This work provides mechanistic insight into Z-scheme-driven photocatalysis.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"193 ","pages":"Article 113663"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825003708","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report ZnO/Ag2CO3 (Z/AC) p–n heterojunctions synthesized via a facile two-step method to enable Z-scheme charge transfer for enhanced photocatalysis performance. Integrated SEM, TEM, XRD, FT-IR, XPS and BET analyses show that ∼5 µm wurtzite-ZnO nanospindles (NSs) are uniformly decorated with 50–200 nm monoclinic-Ag2CO3 nanoparticles (NPs), forming a rough, mesoporous heterojunction whose specific surface area increases from 1.82 to 13.78 m2 g⁻¹. This microarchitecture narrows the optical band-gap from 3.09 to 2.88 eV, suppresses photoluminescence by ∼65.1 %, triples the transient photocurrent, and delivers markedly enhanced photocatalytic activity. The Z/AC-4 heterojunction demonstrates the highest photocatalytic activity, achieving 97.4 % for tetracycline (TC). Scavenger experiments reveal hydroxyl radicals (·OH), holes (h⁺) and superoxide radicals (·O2⁻) as key contributors, with ·OH dominant; Notably, the Z/AC-4 photocatalyst maintains 73.4 % TC degradation efficiency after five cycles, demonstrating excellent structural stability and recyclability. This work provides mechanistic insight into Z-scheme-driven photocatalysis.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.