基于NiCo2O4纳米片一步微波辐照的可持续储能装置

IF 5.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bindu Mishra , P Sivaraman , Navinchandra Shimpi
{"title":"基于NiCo2O4纳米片一步微波辐照的可持续储能装置","authors":"Bindu Mishra ,&nbsp;P Sivaraman ,&nbsp;Navinchandra Shimpi","doi":"10.1016/j.materresbull.2025.113664","DOIUrl":null,"url":null,"abstract":"<div><div>NiCo<sub>2</sub>O<sub>4</sub> nanoflakes (NFs) were synthesized by microwave irradiation method. Characterization of the synthesized NiCo<sub>2</sub>O<sub>4</sub> NFs was done using XRD, FTIR, SAED, SEM, HR-TEM and XPS. The crystallite size calculated using Debye-Scherrer formula was found to be ∼7.86 and nanoflake morphology was confirmed using SEM/TEM. Electrochemical studies, including cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS), were conducted to evaluate the performance. In a three-electrode system, NiCo<sub>2</sub>O<sub>4</sub> NFs demonstrated a high specific capacitance of 932 F g⁻¹ at a scan rate of 5 mVs⁻¹ and retained 97.37% capacitance after 2000 cycles at 5 A g⁻¹. Asymmetric supercapacitor device (NiCo<sub>2</sub>O<sub>4</sub> ||6 M KOH|| AC) delivered a maximal energy density of 25.90 Wh Kg⁻¹ and power density of 96.92 W Kg⁻¹. Due to rapid redox activity and superior electron-ion transport, NiCo<sub>2</sub>O<sub>4</sub> NFs exhibited excellent properties for usage in high performance supercapacitors with exceptional power density.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"193 ","pages":"Article 113664"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable energy storage device based on NiCo2O4 nanoflakes via one step microwave irradiation\",\"authors\":\"Bindu Mishra ,&nbsp;P Sivaraman ,&nbsp;Navinchandra Shimpi\",\"doi\":\"10.1016/j.materresbull.2025.113664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>NiCo<sub>2</sub>O<sub>4</sub> nanoflakes (NFs) were synthesized by microwave irradiation method. Characterization of the synthesized NiCo<sub>2</sub>O<sub>4</sub> NFs was done using XRD, FTIR, SAED, SEM, HR-TEM and XPS. The crystallite size calculated using Debye-Scherrer formula was found to be ∼7.86 and nanoflake morphology was confirmed using SEM/TEM. Electrochemical studies, including cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS), were conducted to evaluate the performance. In a three-electrode system, NiCo<sub>2</sub>O<sub>4</sub> NFs demonstrated a high specific capacitance of 932 F g⁻¹ at a scan rate of 5 mVs⁻¹ and retained 97.37% capacitance after 2000 cycles at 5 A g⁻¹. Asymmetric supercapacitor device (NiCo<sub>2</sub>O<sub>4</sub> ||6 M KOH|| AC) delivered a maximal energy density of 25.90 Wh Kg⁻¹ and power density of 96.92 W Kg⁻¹. Due to rapid redox activity and superior electron-ion transport, NiCo<sub>2</sub>O<sub>4</sub> NFs exhibited excellent properties for usage in high performance supercapacitors with exceptional power density.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"193 \",\"pages\":\"Article 113664\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002554082500371X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082500371X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用微波辐照法制备了NiCo2O4纳米片。采用XRD、FTIR、SAED、SEM、HR-TEM和XPS对合成的NiCo2O4 NFs进行表征。用Debye-Scherrer公式计算得到的晶粒尺寸为~ 7.86,用SEM/TEM证实了纳米片的形貌。通过循环伏安法(CV)、恒流充放电法(GCD)和电化学阻抗谱法(EIS)等电化学研究来评价其性能。在三电极系统中,NiCo2O4 NFs在5 mv -⁻¹的扫描速率下显示出932 F - g的高比电容,在5 mg -⁻¹的扫描速率下,在2000次循环后仍保持97.37%的比电容。不对称超级电容器装置(NiCo2O4 ||6 M KOH|| AC)提供的最大能量密度为25.90 Wh Kg⁻¹,功率密度为96.92 W Kg⁻¹。由于快速的氧化还原活性和优异的电子离子传输,NiCo2O4 NFs具有优异的性能,可用于具有优异功率密度的高性能超级电容器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainable energy storage device based on NiCo2O4 nanoflakes via one step microwave irradiation

Sustainable energy storage device based on NiCo2O4 nanoflakes via one step microwave irradiation
NiCo2O4 nanoflakes (NFs) were synthesized by microwave irradiation method. Characterization of the synthesized NiCo2O4 NFs was done using XRD, FTIR, SAED, SEM, HR-TEM and XPS. The crystallite size calculated using Debye-Scherrer formula was found to be ∼7.86 and nanoflake morphology was confirmed using SEM/TEM. Electrochemical studies, including cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS), were conducted to evaluate the performance. In a three-electrode system, NiCo2O4 NFs demonstrated a high specific capacitance of 932 F g⁻¹ at a scan rate of 5 mVs⁻¹ and retained 97.37% capacitance after 2000 cycles at 5 A g⁻¹. Asymmetric supercapacitor device (NiCo2O4 ||6 M KOH|| AC) delivered a maximal energy density of 25.90 Wh Kg⁻¹ and power density of 96.92 W Kg⁻¹. Due to rapid redox activity and superior electron-ion transport, NiCo2O4 NFs exhibited excellent properties for usage in high performance supercapacitors with exceptional power density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信