{"title":"共掺杂Bi2Fe4O9微晶作为高效光催化降解RhB的过氧单硫酸盐活化剂","authors":"Yuanchun Li, Enrong Zhang, Lingfeng Tang, Yong Fu, Simin Yin","doi":"10.1016/j.materresbull.2025.113665","DOIUrl":null,"url":null,"abstract":"<div><div>Co-doped Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> (BFCO) microcrystals with well-defined facets were successfully synthesized by a facile hydrothermal method. The microstructure, magnetic and photocatalytic activity of BFCO were systematically investigated. It was found that Co doping in Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> greatly varied the morphology of BFCO microcrystals from rods to cubes and induced an efficient photocatalytic degradation of RhB via PMS activation under visible light. The BFCO-3 microcrystals exhibited the highest photocatalytic activity, with 98.2 % of RhB degraded in 30 min (<em>k</em> = 0.137 min<sup>−1</sup>), 4.6 times higher than that of pure Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> (0.030 min<sup>−1</sup>). It was revealed that the Co doping led to a narrowed bandgap (<strong>1.75 eV</strong>), and effective separation of photo-generated electrons and holes in BFCO. And the abundant Fe<sup>2+</sup>and O<sub>v</sub> in BFCO also contributed to the remarkable photocatalytic PMS activation. Moreover, the sample possessed enhanced ferromagnetic property, making it highly attractive for magnetic recollecting in practical wastewater purification.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"193 ","pages":"Article 113665"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-doped Bi2Fe4O9 microcrystals as potent peroxymonosulfate activator for efficient photocatalytic degradation of RhB\",\"authors\":\"Yuanchun Li, Enrong Zhang, Lingfeng Tang, Yong Fu, Simin Yin\",\"doi\":\"10.1016/j.materresbull.2025.113665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Co-doped Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> (BFCO) microcrystals with well-defined facets were successfully synthesized by a facile hydrothermal method. The microstructure, magnetic and photocatalytic activity of BFCO were systematically investigated. It was found that Co doping in Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> greatly varied the morphology of BFCO microcrystals from rods to cubes and induced an efficient photocatalytic degradation of RhB via PMS activation under visible light. The BFCO-3 microcrystals exhibited the highest photocatalytic activity, with 98.2 % of RhB degraded in 30 min (<em>k</em> = 0.137 min<sup>−1</sup>), 4.6 times higher than that of pure Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> (0.030 min<sup>−1</sup>). It was revealed that the Co doping led to a narrowed bandgap (<strong>1.75 eV</strong>), and effective separation of photo-generated electrons and holes in BFCO. And the abundant Fe<sup>2+</sup>and O<sub>v</sub> in BFCO also contributed to the remarkable photocatalytic PMS activation. Moreover, the sample possessed enhanced ferromagnetic property, making it highly attractive for magnetic recollecting in practical wastewater purification.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"193 \",\"pages\":\"Article 113665\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825003721\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825003721","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Co-doped Bi2Fe4O9 microcrystals as potent peroxymonosulfate activator for efficient photocatalytic degradation of RhB
Co-doped Bi2Fe4O9 (BFCO) microcrystals with well-defined facets were successfully synthesized by a facile hydrothermal method. The microstructure, magnetic and photocatalytic activity of BFCO were systematically investigated. It was found that Co doping in Bi2Fe4O9 greatly varied the morphology of BFCO microcrystals from rods to cubes and induced an efficient photocatalytic degradation of RhB via PMS activation under visible light. The BFCO-3 microcrystals exhibited the highest photocatalytic activity, with 98.2 % of RhB degraded in 30 min (k = 0.137 min−1), 4.6 times higher than that of pure Bi2Fe4O9 (0.030 min−1). It was revealed that the Co doping led to a narrowed bandgap (1.75 eV), and effective separation of photo-generated electrons and holes in BFCO. And the abundant Fe2+and Ov in BFCO also contributed to the remarkable photocatalytic PMS activation. Moreover, the sample possessed enhanced ferromagnetic property, making it highly attractive for magnetic recollecting in practical wastewater purification.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.