{"title":"Dy /Eu掺杂A2P2O7 (A = Ca/Sr/Ba和Zn)白光荧光粉的结构-发光相关性研究","authors":"M. Parvathy , P.S. Ghosh , A. Arya , M. Sabeena","doi":"10.1016/j.materresbull.2025.113661","DOIUrl":null,"url":null,"abstract":"<div><div>Structure-luminescence correlation in Dy/Eu doped pyrophosphate materials (A<sub>2</sub>P<sub>2</sub>O<sub>7</sub>; <em>A</em> = Ca, Sr, Ba, Zn) is investigated, unveiling novel strategies for white light generation. The Hubbard corrected density functional theory (DFT+<em>U</em>) calculations reveal that Dy<sup>3+</sup> doping reduces the coordination number and metal-oxygen bond lengths. The local lattice distortions enhance the asymmetric crystal field, favoring <sup>4</sup>F<sub>9/2</sub> → <sup>6</sup>H<sub>15/2</sub>, <sup>6</sup>H<sub>13/2</sub> transitions corresponding to blue and yellow emissions following the <span><math><mrow><mn>4</mn><mi>f</mi><mi>→</mi><mn>5</mn><mi>d</mi><mi>→</mi><mn>4</mn><mi>f</mi></mrow></math></span> energy transfer pathway. The luminescence mechanism confirms that Eu²⁺ exhibits stronger hybridization with oxygen, yielding blue-green emission through the <span><math><mrow><mi>f</mi><mo>−</mo><mi>d</mi></mrow></math></span> transition, while Eu³⁺ contributes red-orange emission via <span><math><mrow><mi>f</mi><mo>−</mo><mi>f</mi></mrow></math></span> transitions. The Eu doped systems are more resistant to lattice strain than Dy doped ones, and structurally more perturbed due to smaller ionic radii and stronger Coulomb interactions. These findings predict the oxidation state variations based on structural constraints and offer deep insight into the electronic structure and luminescence behavior of pyrophosphate phosphors.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"193 ","pages":"Article 113661"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-luminescence correlation studies in Dy /Eu doped A2P2O7 (A = Ca/Sr/Ba and Zn) phosphors for white light generation\",\"authors\":\"M. Parvathy , P.S. Ghosh , A. Arya , M. Sabeena\",\"doi\":\"10.1016/j.materresbull.2025.113661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structure-luminescence correlation in Dy/Eu doped pyrophosphate materials (A<sub>2</sub>P<sub>2</sub>O<sub>7</sub>; <em>A</em> = Ca, Sr, Ba, Zn) is investigated, unveiling novel strategies for white light generation. The Hubbard corrected density functional theory (DFT+<em>U</em>) calculations reveal that Dy<sup>3+</sup> doping reduces the coordination number and metal-oxygen bond lengths. The local lattice distortions enhance the asymmetric crystal field, favoring <sup>4</sup>F<sub>9/2</sub> → <sup>6</sup>H<sub>15/2</sub>, <sup>6</sup>H<sub>13/2</sub> transitions corresponding to blue and yellow emissions following the <span><math><mrow><mn>4</mn><mi>f</mi><mi>→</mi><mn>5</mn><mi>d</mi><mi>→</mi><mn>4</mn><mi>f</mi></mrow></math></span> energy transfer pathway. The luminescence mechanism confirms that Eu²⁺ exhibits stronger hybridization with oxygen, yielding blue-green emission through the <span><math><mrow><mi>f</mi><mo>−</mo><mi>d</mi></mrow></math></span> transition, while Eu³⁺ contributes red-orange emission via <span><math><mrow><mi>f</mi><mo>−</mo><mi>f</mi></mrow></math></span> transitions. The Eu doped systems are more resistant to lattice strain than Dy doped ones, and structurally more perturbed due to smaller ionic radii and stronger Coulomb interactions. These findings predict the oxidation state variations based on structural constraints and offer deep insight into the electronic structure and luminescence behavior of pyrophosphate phosphors.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"193 \",\"pages\":\"Article 113661\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002554082500368X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082500368X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
Dy/Eu掺杂焦磷酸盐材料(A2P2O7)的结构-发光相关性研究了A = Ca, Sr, Ba, Zn),揭示了白光产生的新策略。Hubbard校正密度泛函理论(DFT+U)计算表明,Dy3+掺杂降低了配位数和金属-氧键长度。局部晶格畸变增强了不对称晶体场,有利于4f→5d→4f能量转移路径下的蓝色和黄色发射对应的4F9/2→6H15/2、6H13/2跃迁。发光机理证实,Eu 2 +与氧表现出更强的杂化,通过f−f跃迁产生蓝绿色发射,而Eu³+通过f−f跃迁产生红橙色发射。Eu掺杂体系比Dy掺杂体系更能抵抗晶格应变,并且由于离子半径更小和库仑相互作用更强,在结构上扰动更大。这些发现预测了基于结构约束的氧化态变化,并对焦磷酸盐荧光粉的电子结构和发光行为提供了深入的了解。
Structure-luminescence correlation studies in Dy /Eu doped A2P2O7 (A = Ca/Sr/Ba and Zn) phosphors for white light generation
Structure-luminescence correlation in Dy/Eu doped pyrophosphate materials (A2P2O7; A = Ca, Sr, Ba, Zn) is investigated, unveiling novel strategies for white light generation. The Hubbard corrected density functional theory (DFT+U) calculations reveal that Dy3+ doping reduces the coordination number and metal-oxygen bond lengths. The local lattice distortions enhance the asymmetric crystal field, favoring 4F9/2 → 6H15/2, 6H13/2 transitions corresponding to blue and yellow emissions following the energy transfer pathway. The luminescence mechanism confirms that Eu²⁺ exhibits stronger hybridization with oxygen, yielding blue-green emission through the transition, while Eu³⁺ contributes red-orange emission via transitions. The Eu doped systems are more resistant to lattice strain than Dy doped ones, and structurally more perturbed due to smaller ionic radii and stronger Coulomb interactions. These findings predict the oxidation state variations based on structural constraints and offer deep insight into the electronic structure and luminescence behavior of pyrophosphate phosphors.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.