Yaodong Guo , Hassan Idris Abdu , Hamouda Adam Hamouda , Omer Almamoun , Taslim Aboudou , Eman Shaiba Thani , Sefiu Abolaji Rasaki
{"title":"在还原氧化石墨烯纳米片中嵌入分层多孔SnO 2增强超级电容器性能","authors":"Yaodong Guo , Hassan Idris Abdu , Hamouda Adam Hamouda , Omer Almamoun , Taslim Aboudou , Eman Shaiba Thani , Sefiu Abolaji Rasaki","doi":"10.1016/j.materresbull.2025.113662","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents hierarchically porous SnO₂ microspheres embedded in reduced graphene oxide (SnO₂/rGO-T) as high-performance supercapacitor electrodes. Synthesized via hydrothermal treatment with fluoride ions and annealing (300 °C/500 °C), the SnO₂/rGO-T structure leverages Ostwald ripening and high-energy crystal facets to optimize porosity and ion diffusion. Fluoride ions guide SnO₂ growth on ultrathin rGO nanosheets, forming uniform microspheres with enhanced conductivity. Annealing at 500 °C yields superior crystallinity and hierarchical structure, enabling SnO₂/rGO-500 to achieve a specific capacitance of 241 F/g (2 M KOH), energy density of 22.7 Wh/kg, and power density of 900 W/kg at 1 A/g, with 89.7 % capacitance retention after 10,000 cycles—outperforming SnO₂/rGO-300 and bare SnO₂. The synergy between rGO (preventing aggregation) and annealed SnO₂ (improving charge transfer) underpins this performance. This work offers a scalable, rational design strategy for SnO₂-rGO electrodes in energy storage applications.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"193 ","pages":"Article 113662"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced supercapacitor performance with hierarchically porous SnO₂ embedded in reduced graphene oxide nanosheets\",\"authors\":\"Yaodong Guo , Hassan Idris Abdu , Hamouda Adam Hamouda , Omer Almamoun , Taslim Aboudou , Eman Shaiba Thani , Sefiu Abolaji Rasaki\",\"doi\":\"10.1016/j.materresbull.2025.113662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents hierarchically porous SnO₂ microspheres embedded in reduced graphene oxide (SnO₂/rGO-T) as high-performance supercapacitor electrodes. Synthesized via hydrothermal treatment with fluoride ions and annealing (300 °C/500 °C), the SnO₂/rGO-T structure leverages Ostwald ripening and high-energy crystal facets to optimize porosity and ion diffusion. Fluoride ions guide SnO₂ growth on ultrathin rGO nanosheets, forming uniform microspheres with enhanced conductivity. Annealing at 500 °C yields superior crystallinity and hierarchical structure, enabling SnO₂/rGO-500 to achieve a specific capacitance of 241 F/g (2 M KOH), energy density of 22.7 Wh/kg, and power density of 900 W/kg at 1 A/g, with 89.7 % capacitance retention after 10,000 cycles—outperforming SnO₂/rGO-300 and bare SnO₂. The synergy between rGO (preventing aggregation) and annealed SnO₂ (improving charge transfer) underpins this performance. This work offers a scalable, rational design strategy for SnO₂-rGO electrodes in energy storage applications.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"193 \",\"pages\":\"Article 113662\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825003691\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825003691","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了嵌入还原氧化石墨烯(SnO₂/rGO-T)中的分层多孔SnO₂微球作为高性能超级电容器电极。通过氟离子水热处理和退火(300°C/500°C)合成,SnO₂/rGO-T结构利用奥斯特瓦尔德成熟和高能晶体面来优化孔隙率和离子扩散。氟离子引导SnO 2在超薄氧化石墨烯纳米片上生长,形成具有增强导电性的均匀微球。500°C退火可获得优异的结晶度和分层结构,使SnO₂/rGO-500在1 a /g时达到241 F/g (2 M KOH)的比电容,22.7 Wh/kg的能量密度和900 W/kg的功率密度,在10,000次循环后具有98.7%的电容保留率-优于SnO₂/rGO-300和裸SnO₂。氧化石墨烯(防止聚集)和退火SnO₂(改善电荷转移)之间的协同作用巩固了这一性能。这项工作为储能应用中的SnO₂-rGO电极提供了一种可扩展的、合理的设计策略。
Enhanced supercapacitor performance with hierarchically porous SnO₂ embedded in reduced graphene oxide nanosheets
This study presents hierarchically porous SnO₂ microspheres embedded in reduced graphene oxide (SnO₂/rGO-T) as high-performance supercapacitor electrodes. Synthesized via hydrothermal treatment with fluoride ions and annealing (300 °C/500 °C), the SnO₂/rGO-T structure leverages Ostwald ripening and high-energy crystal facets to optimize porosity and ion diffusion. Fluoride ions guide SnO₂ growth on ultrathin rGO nanosheets, forming uniform microspheres with enhanced conductivity. Annealing at 500 °C yields superior crystallinity and hierarchical structure, enabling SnO₂/rGO-500 to achieve a specific capacitance of 241 F/g (2 M KOH), energy density of 22.7 Wh/kg, and power density of 900 W/kg at 1 A/g, with 89.7 % capacitance retention after 10,000 cycles—outperforming SnO₂/rGO-300 and bare SnO₂. The synergy between rGO (preventing aggregation) and annealed SnO₂ (improving charge transfer) underpins this performance. This work offers a scalable, rational design strategy for SnO₂-rGO electrodes in energy storage applications.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.