Long Ma , Yunfei He , Sihao Dou , Long Xia , Dongdong Liu , Bo Zhong , Xiaoxiao Huang
{"title":"Efficient microwave absorber for phase-engineered modulation of MoS2 induced by trace atom doping","authors":"Long Ma , Yunfei He , Sihao Dou , Long Xia , Dongdong Liu , Bo Zhong , Xiaoxiao Huang","doi":"10.1016/j.mtphys.2025.101752","DOIUrl":"10.1016/j.mtphys.2025.101752","url":null,"abstract":"<div><div>The traditional electromagnetic microwave (EM) absorption materials are limited by the electromagnetic response characteristics dominated by a single loss mechanism, and it is difficult to realize the cooperative optimization of multiple loss mechanisms and impedance matching. In this study, the phase structure engineering and defect characteristics of MoS<sub>2</sub> were controlled by heteroatom doping strategy, and Fe-doped yolk-shell MoS<sub>2</sub> nanoflower microspheres EM absorption material were successfully prepared. The introduction of Fe atoms can form an atomic-level \" charge-enriched center \" defect, induce crystal structure distortion, and thus realize the construction of a high-density and stable 1T/2H heterogeneous interface. The ratio of 1T/2H phase increases with the increase of the gradient of Fe atom doping. Specifically, the 8Fe-MoS<sub>2</sub> sample demonstrated excellent EM absorption performance at a matching thickness of 1.95 mm, with a maximum effective absorption bandwidth (EAB) of 5.36 GHz and a minimum reflection loss (RL) of −72.18 dB (1.65 mm). Through detailed characterization and multi-scale simulation, it is revealed that the superior EM absorption performance is the result of the synergistic effect of Fe defect induced polarization, interface polarization at high density heterogeneous interface, resistance loss and EM transmission path optimization. This multi-scale control strategy precisely combines the coupling effect of MoS<sub>2</sub>'s defect characteristics and phase structure with multiple dielectric loss mechanisms, which provides a new design idea for developing high-performance MoS<sub>2</sub>-based EM absorption materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101752"},"PeriodicalIF":10.0,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Programming stretchable planar coils as strain-invariant inductors and ultrasensitive wearable sensors","authors":"Zhengyan Wang, Xinxin Chang, Yingao Xu, Yingjie Gao, Yulian Peng, Yueyang Wang, Zhihua Feng, Hongbo Wang","doi":"10.1016/j.mtphys.2025.101755","DOIUrl":"10.1016/j.mtphys.2025.101755","url":null,"abstract":"<div><div>Stretchable planar coils play increasingly important roles in flexible electronics, from wireless antennas, electrical components, to inductive sensors. Understanding the governing law that affects the inductance-strain behavior is of critical importance. In this paper, we identify that aspect ratio (AR) is the only crucial design parameter, with rigorous numerical analysis and experimental validation. The inductance response of the stretchable planar coil can be controlled during the strain process, and the strain sensitivity can be tailored across 3 orders of amplitude. A strain-invariant stretchable coil is designed with a maximum inductance change less than 1 % when stretched by 50 %, and is demonstrated for wireless power transfer and wireless communication. In addition, high aspect ratio coils are designed as inductive strain sensors with hysteresis free, temperature and pressure invariant, linear response to strain over 100 %, and a detection limit down to 0.01 % strain. We demonstrate that the inductive strain sensors worn on the forearm enable imperceptible monitoring of fine finger movements, muscle fatigue, response time, grasping force and size, and hand gestures.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101755"},"PeriodicalIF":10.0,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144067391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Tahir Sohail , Jinde Yin , Bowen Li , Muhammad Tayyab Sohail , Yan Peiguang
{"title":"High-efficiency 1.94 μm single-oscillator monolithic thulium-doped fiber laser with more than 200 W output power","authors":"Muhammad Tahir Sohail , Jinde Yin , Bowen Li , Muhammad Tayyab Sohail , Yan Peiguang","doi":"10.1016/j.mtphys.2025.101753","DOIUrl":"10.1016/j.mtphys.2025.101753","url":null,"abstract":"<div><div>In this paper, we present the realization of a diode-pumped monolithic thulium-doped all-fiber laser operating at 1.94 μm, employing a single-oscillator architecture (SOA). Our findings demonstrate the production of 203.2 W of laser output power from an incident pump power of 353 W at 793 nm, achieving a remarkable slope efficiency of 61.2 %. The laser features a central wavelength of 1940.6 nm with an FWHM bandwidth of 2 nm at the output signal power of 203.2 W. Notably, the laser exhibited exceptional stability, with power variations of less than 0.2 % over a continuous 2-h operation at maximum output power. To our knowledge, this achievement marks the highest output power reached around 1.94 μm while maintaining such slope efficiency and power stability based on SOA. Additionally, we introduce an innovative splicing technique for large mode area (LMA) fibers, effectively enhancing the transmission of high-power emissions. This thulium-doped all-fiber laser holds significant promise for applications in both the medical and industrial sectors.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101753"},"PeriodicalIF":10.0,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianbo Zhu , Jingyu Li , Zhuoyang Ti , Lankun Wang , Yaoling Shen , Liuming Wei , Xiaobing Liu , Xin Chen , Peng-Fei Liu , Jiehe Sui , Yongsheng Zhang
{"title":"eDoping: A high-throughput software package for evaluating point defect doping limits in semiconductor and insulator materials","authors":"Jianbo Zhu , Jingyu Li , Zhuoyang Ti , Lankun Wang , Yaoling Shen , Liuming Wei , Xiaobing Liu , Xin Chen , Peng-Fei Liu , Jiehe Sui , Yongsheng Zhang","doi":"10.1016/j.mtphys.2025.101754","DOIUrl":"10.1016/j.mtphys.2025.101754","url":null,"abstract":"<div><div>Doping significantly influences the physical properties of semiconductor and insulator materials, playing a pivotal role in their technological applications. These effects are particularly pronounced in devices like thermoelectrics, photovoltaics, and solar cells. First-principles calculations, based on density functional theory, have emerged as a powerful method for investigating point defects in solid materials. Here, we introduce eDoping, a Python software package designed to serve as a robust toolkit for setting up initial calculations and conducting post-processing analysis to derive defect effects in semiconductors using widely adopted density functional theory. eDoping offers a user-friendly command-line interface for point defect studies, encompassing aspects like chemical stability domains, defect charge transition levels, formation energies, self-consistent Fermi energy, frozen Fermi energy, and defect carrier concentrations. It enables the exploration of key material properties at the atomic level, addressing questions related to material dopability. Moreover, it serves as a valuable framework for automating high-throughput defect calculations, contributing to our understanding of the thermodynamic properties of point defects in semiconductors from a theoretical perspective.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101754"},"PeriodicalIF":10.0,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yile Yang , Yongping Pu , Lei Zhang , Min Chen , Xuhui Lv , Jinbo Zhang , Bo Wang , Shaobin Zhang , Jing Shang
{"title":"Enhancing energy storage performance of antiferroelectric NaNbO3-Bi1/3SbO3 ceramics guided by first-principles calculations","authors":"Yile Yang , Yongping Pu , Lei Zhang , Min Chen , Xuhui Lv , Jinbo Zhang , Bo Wang , Shaobin Zhang , Jing Shang","doi":"10.1016/j.mtphys.2025.101748","DOIUrl":"10.1016/j.mtphys.2025.101748","url":null,"abstract":"<div><div>The application of Sodium niobate (NaNbO<sub>3</sub>, NN) ceramics with antiferroelectric (AFE) crystal phase faces the severe limitations in low energy density and efficiency due to the instability of the antiferroelectric phase and relatively low breakdown strength. The traditional methods still rely on a large amount of experimental verification. However, the internal mechanism remains unclear. To address this challenge, in the present study, the results of A-site defect engineering from density function theory (DFT) guides to design the modified ingredient of (1-<em>x</em>)NaNbO<sub>3</sub>-<em>x</em>Bi<sub>1/3</sub>SbO<sub>3</sub> ceramics with more stable AFE P phase. The theoretical results indicate that the BiSbO<sub>3</sub> (BS) doping helps to induce a crystal phase transition from the stable ferroelectric (FE) to the more stable AFE state, with an energy difference of 9.762 meV. The main reason is that doping with BS suppresses the distortion index <em>D</em> of BO<sub>6</sub> from 4.39 to 2.86 and increases the <em>θ</em><sub>c</sub> averaged tilting angle from 25.5 to 26.4, thereby significantly stabilizing the AFE P phase. However, this also generates Na vacancies, necessitating the formation of oxygen vacancies to maintain defect balance, which adversely affects the structural stability and breakdown strength of NN. First-principles calculations indicate that inhibiting oxygen vacancy formation raises the bandgap from 1.41 to 2.45 eV, thereby enhancing structural stability and breakdown strength. Guided by these theoretical insights, doped NN ceramics were heat-treated in oxygen atmosphere, and their insulation performance was evaluated. The results confirm the effectiveness of the oxygen vacancy suppression strategy. Ultimately, the experimental findings support our theoretical predictions, providing a strong theoretical and experimental foundation for improving the energy storage performance of NN-based AFE ceramics.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101748"},"PeriodicalIF":10.0,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Liu , Mengying Bian , Xingfeng Zhang , Yuqing Li , Xuerui Xu , Weiqiang Liu , Qiong Wu , Ming Yue
{"title":"Constructing layered composite magnets to achieve long-range magnetic coupling in nanocrystalline (SmZr)(FeCoTi)12/(SmPr)Co5 composites","authors":"Lin Liu , Mengying Bian , Xingfeng Zhang , Yuqing Li , Xuerui Xu , Weiqiang Liu , Qiong Wu , Ming Yue","doi":"10.1016/j.mtphys.2025.101749","DOIUrl":"10.1016/j.mtphys.2025.101749","url":null,"abstract":"<div><div>Good magnetic coupling is the key to preparing high-performance nanocomposite permanent magnetic materials, which is an effective way to break the trade-off between magnetization and coercivity. This paper proposes a method to achieve good magnetic coupling by designing perpendicular interfaces and using micromagnetic simulations, leveraging both long-range dipolar and short-range exchange interactions. Flake-like (SmZr)(FeCoTi)<sub>12</sub> and granular Sm<sub>0.6</sub>Pr<sub>0.4</sub>Co<sub>5</sub> nanocrystalline powders were selected, and a layered composite magnet with excellent comprehensive magnetic properties was prepared by combining hot pressing and hot deformation processes. The prepared composite magnet exhibits significant magnetic anisotropy and good magnetic coupling effect. Furthermore, the factors affecting magnetic properties were explored by combining microstructural characterization with macroscopic magnetization analysis. Our findings also provide a reliable reference for the development of nanocrystalline composite permanent magnetic materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101749"},"PeriodicalIF":10.0,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-xuan Liang , Si-tong Luo , Zhi-bo Wei , Tao Wang , Yun-tian Jiang , Ling-xi Dong , Shu-Qi Zheng , Wei-yu Song , Hong-chao Wang
{"title":"Phonon-electron decoupling enables ultralow thermal conductivity in YCl3 & Te-doped Mg3.2Sb1.5Bi0.5","authors":"Jing-xuan Liang , Si-tong Luo , Zhi-bo Wei , Tao Wang , Yun-tian Jiang , Ling-xi Dong , Shu-Qi Zheng , Wei-yu Song , Hong-chao Wang","doi":"10.1016/j.mtphys.2025.101747","DOIUrl":"10.1016/j.mtphys.2025.101747","url":null,"abstract":"<div><div>Mg<sub>3</sub>Sb<sub>2</sub>-based thermoelectric materials are widely recognized as highly promising functional materials due to their cost-effectiveness, non-toxicity, and environmental friendliness. In this study, a synergistic doping strategy involving YCl<sub>3</sub> & Te was implemented, achieving a peak ZT value of 1.83 at 723K in the Mg<sub>3.2</sub>Sb<sub>1.5</sub>Bi<sub>0.49</sub>Te<sub>0.01</sub> + 1 % YCl<sub>3</sub> composition. First-principles calculations demonstrate that YCl<sub>3</sub> & Te co-doping precisely modulates the Fermi level position, facilitating n-type conduction behavior. Simultaneously, the substitution of Sb by Cl induces lattice contraction, while the doping-driven \"avoided crossing\" effect collectively suppresses phonon transport, resulting in an ultralow lattice thermal conductivity of 0.27 W m<sup>−1</sup> K<sup>−1</sup>. Moreover, the incorporation of YCl<sub>3</sub> & Te significantly improves the deformation resistance of Mg<sub>3</sub>Sb<sub>2</sub>, enhancing its suitability for subsequent material processing and device integration. Finite element analysis predicts that the energy conversion efficiency of the Mg<sub>3.2</sub>Sb<sub>1.5</sub>Bi<sub>0.49</sub>Te<sub>0.01</sub> + 1 % YCl<sub>3</sub> sample exceeds 11 % under a temperature gradient of 423K. This work provides new insights into the phonon-electron decoupling mechanism in Mg<sub>3</sub>Sb<sub>2</sub>-based thermoelectric materials through the synergistic regulation of band engineering and phonon engineering.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101747"},"PeriodicalIF":10.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143920376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiang Chen , Houping Xia , Jianghe Feng , Yang Xiong , Guoying Dong , Juan Li , Ruiheng Liu
{"title":"Theoretical and numerical study on thermoelectric transient cooling for hotspot elimination under alternating current mode","authors":"Xiang Chen , Houping Xia , Jianghe Feng , Yang Xiong , Guoying Dong , Juan Li , Ruiheng Liu","doi":"10.1016/j.mtphys.2025.101744","DOIUrl":"10.1016/j.mtphys.2025.101744","url":null,"abstract":"<div><div>The escalating power density in modern microelectronics gives rise to high-frequency thermal hotspots that pose severe challenges to on-chip thermal management. Microscale thermoelectric coolers (μ-TECs), possessing unique advantages such as, rapid response, precise temperature control, and high reliability, offer promising solution for localized chip-level cooling. However, conventional steady-state and transient pulse cooling methods remain insufficient for dissipating the sustained, ultra-high heat flux generated by these hotspots. In this study, we investigated the heat transport behavior of thermoelectric cooling under alternating current mode through a combined approach of analytical modeling and finite element simulations. The results demonstrated that the hotspot temperatures could be effectively suppressed by optimally matching the amplitude and phase of the alternating current applied to μ-TECs. Additionally, high thermal conductivity and low interfacial contact resistance further enhanced active cooling performance. Furthermore, the integration of a negative direct current offset into the optimized silicon-based μ-TEC achieved a 3.29 K reduction in peak hotspot temperature and significantly reduced temperature fluctuation from 65.62 K to 20.66 K, under an ultra-high heat flux of 6.37 kW/cm<sup>2</sup>. This study points out the priorities for materials research and device optimization for on-chip μ-TECs and paves the way for achieving transient thermal management of chip hotspots.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101744"},"PeriodicalIF":10.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143920377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iftikhar Hussain , Abdullah Al Mahmud , Sabarison Pandiyarajan , Karanpal Singh , Essam H. Ibrahim , Pritam J. Morankar , Sajjad Hussain , P. Rosaiah , Muhammad Zubair Khan , Zeeshan Ajmal , Bhargav Akkinepally , Ho-Chiao Chuang , Kaili Zhang
{"title":"Practicality of MXenes: Recent trends, considerations, and future aspects in supercapacitors","authors":"Iftikhar Hussain , Abdullah Al Mahmud , Sabarison Pandiyarajan , Karanpal Singh , Essam H. Ibrahim , Pritam J. Morankar , Sajjad Hussain , P. Rosaiah , Muhammad Zubair Khan , Zeeshan Ajmal , Bhargav Akkinepally , Ho-Chiao Chuang , Kaili Zhang","doi":"10.1016/j.mtphys.2025.101745","DOIUrl":"10.1016/j.mtphys.2025.101745","url":null,"abstract":"<div><div>MXenes, a family of two-dimensional (2D) transition metal carbides and nitrides have garnered significant interest owing to their unique properties, making them suitable for electrode materials in flexible and wearable supercapacitors (SCs). A significant portion of MXenes has predominantly been utilized in a three-electrode configuration, lacking practical applications. Herein, we have conducted a comprehensive review of recent advancements concerning the practical application of MXenes in two-electrode SCs. Critical considerations such as expanding the potential/voltage window, optimizing electrolytes, electrode selection, limitations of both electrodes and electrolytes, and exploration of electrode hybridization have been thoroughly investigated. Moreover, we have discussed the latest progress in MXenes and their prospective contributions to advancing SC applications. The future aspects of MXene-based SCs have been proposed, thereby facilitating advancements in energy storage technologies and their tangible integration into real-world electronic applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101745"},"PeriodicalIF":10.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143926347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuqi Liu , Long Zhang , Zhiyuan Xu , Shuaiwei Fan , Guoying Gao
{"title":"Room-temperature bipolar ferrovalley semiconductors and anomalous valley Hall effect in Janus CeClI and CeBrI","authors":"Yuqi Liu , Long Zhang , Zhiyuan Xu , Shuaiwei Fan , Guoying Gao","doi":"10.1016/j.mtphys.2025.101743","DOIUrl":"10.1016/j.mtphys.2025.101743","url":null,"abstract":"<div><div>Ferrovalley materials with perpendicular magnetic anisotropy (PMA), high Curie temperature (<em>T</em><sub>C</sub>) and large valley polarization are very crucial to spintronic and valleytronic applications. We herein propose two 2D <em>f</em>-electron Janus CeClI and CeBrI with strong spin-orbit coupling, and use first-principles calculations, Monte Carlo simulations and Wannier functions to investigate the magnetic anisotropy, magnetic transition temperature, valley characteristic and anomalous valley Hall effect (AVHE). Both CeClI and CeBrI monolayers are found to be above-room-temperature ferromagnetic semiconductors with <em>T</em><sub>C</sub>s of 468 and 418 K, respectively, which are robust to biaxial strain. Monolayer CeClI possesses the PMA and the spontaneous bipolar valley polarization of 54.5 (75.4) meV at the valence (conduction) band. Monolayer CeBrI exhibits the in-plane magnetic anisotropy (IMA), but a very slight compressive biaxial strain (less than −1 %) can induce the IMA-to-PMA transition with the bipolar valley polarization of 61.8 (80.2 meV) at the valence (conduction) band under −1 % compressive strain. The compressive strain increases the PMA mainly contributed by Ce-<em>d</em> and I-<em>p</em> electrons, and decreases the valley polarization due to the weakened spin-orbit coupling, but the valley polarization is still considerable. Interestingly, under only −1 % (−2 %) compressive strain, the valley locates at the valence band maximum, leading to the AVHE for CeBrI (CeClI). Our present work highlights the robust high <em>T</em><sub>C</sub>, large bipolar valley polarization and AVHE in 2D CeClI and CeBrI, which will stimulate extensive studies on <em>f</em>-electron Janus ferrovalley systems for spintronic and valleytronic applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101743"},"PeriodicalIF":10.0,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143910688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}