室温双极性铁谷半导体和Janus CeClI和CeBrI中的异常谷霍尔效应

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuqi Liu , Long Zhang , Zhiyuan Xu , Shuaiwei Fan , Guoying Gao
{"title":"室温双极性铁谷半导体和Janus CeClI和CeBrI中的异常谷霍尔效应","authors":"Yuqi Liu ,&nbsp;Long Zhang ,&nbsp;Zhiyuan Xu ,&nbsp;Shuaiwei Fan ,&nbsp;Guoying Gao","doi":"10.1016/j.mtphys.2025.101743","DOIUrl":null,"url":null,"abstract":"<div><div>Ferrovalley materials with perpendicular magnetic anisotropy (PMA), high Curie temperature (<em>T</em><sub>C</sub>) and large valley polarization are very crucial to spintronic and valleytronic applications. We herein propose two 2D <em>f</em>-electron Janus CeClI and CeBrI with strong spin-orbit coupling, and use first-principles calculations, Monte Carlo simulations and Wannier functions to investigate the magnetic anisotropy, magnetic transition temperature, valley characteristic and anomalous valley Hall effect (AVHE). Both CeClI and CeBrI monolayers are found to be above-room-temperature ferromagnetic semiconductors with <em>T</em><sub>C</sub>s of 468 and 418 K, respectively, which are robust to biaxial strain. Monolayer CeClI possesses the PMA and the spontaneous bipolar valley polarization of 54.5 (75.4) meV at the valence (conduction) band. Monolayer CeBrI exhibits the in-plane magnetic anisotropy (IMA), but a very slight compressive biaxial strain (less than −1 %) can induce the IMA-to-PMA transition with the bipolar valley polarization of 61.8 (80.2 meV) at the valence (conduction) band under −1 % compressive strain. The compressive strain increases the PMA mainly contributed by Ce-<em>d</em> and I-<em>p</em> electrons, and decreases the valley polarization due to the weakened spin-orbit coupling, but the valley polarization is still considerable. Interestingly, under only −1 % (−2 %) compressive strain, the valley locates at the valence band maximum, leading to the AVHE for CeBrI (CeClI). Our present work highlights the robust high <em>T</em><sub>C</sub>, large bipolar valley polarization and AVHE in 2D CeClI and CeBrI, which will stimulate extensive studies on <em>f</em>-electron Janus ferrovalley systems for spintronic and valleytronic applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101743"},"PeriodicalIF":10.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-temperature bipolar ferrovalley semiconductors and anomalous valley Hall effect in Janus CeClI and CeBrI\",\"authors\":\"Yuqi Liu ,&nbsp;Long Zhang ,&nbsp;Zhiyuan Xu ,&nbsp;Shuaiwei Fan ,&nbsp;Guoying Gao\",\"doi\":\"10.1016/j.mtphys.2025.101743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ferrovalley materials with perpendicular magnetic anisotropy (PMA), high Curie temperature (<em>T</em><sub>C</sub>) and large valley polarization are very crucial to spintronic and valleytronic applications. We herein propose two 2D <em>f</em>-electron Janus CeClI and CeBrI with strong spin-orbit coupling, and use first-principles calculations, Monte Carlo simulations and Wannier functions to investigate the magnetic anisotropy, magnetic transition temperature, valley characteristic and anomalous valley Hall effect (AVHE). Both CeClI and CeBrI monolayers are found to be above-room-temperature ferromagnetic semiconductors with <em>T</em><sub>C</sub>s of 468 and 418 K, respectively, which are robust to biaxial strain. Monolayer CeClI possesses the PMA and the spontaneous bipolar valley polarization of 54.5 (75.4) meV at the valence (conduction) band. Monolayer CeBrI exhibits the in-plane magnetic anisotropy (IMA), but a very slight compressive biaxial strain (less than −1 %) can induce the IMA-to-PMA transition with the bipolar valley polarization of 61.8 (80.2 meV) at the valence (conduction) band under −1 % compressive strain. The compressive strain increases the PMA mainly contributed by Ce-<em>d</em> and I-<em>p</em> electrons, and decreases the valley polarization due to the weakened spin-orbit coupling, but the valley polarization is still considerable. Interestingly, under only −1 % (−2 %) compressive strain, the valley locates at the valence band maximum, leading to the AVHE for CeBrI (CeClI). Our present work highlights the robust high <em>T</em><sub>C</sub>, large bipolar valley polarization and AVHE in 2D CeClI and CeBrI, which will stimulate extensive studies on <em>f</em>-electron Janus ferrovalley systems for spintronic and valleytronic applications.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"55 \",\"pages\":\"Article 101743\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000999\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000999","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有垂直磁各向异性(PMA)、高居里温度(TC)和大谷极化的铁谷材料在自旋电子和谷电子应用中是非常重要的。本文提出了两个具有强自旋-轨道耦合的二维f电子Janus CeClI和CeBrI,并利用第一性原理计算、蒙特卡罗模拟和万尼尔函数研究了它们的磁各向异性、磁转变温度、谷特性和反常谷霍尔效应(AVHE)。celi和CeBrI单层均为室温以上的铁磁性半导体,TCs分别为468和418 K,对双轴应变具有鲁棒性。单层CeClI在价(导)带具有PMA和54.5 (75.4)meV的自发双极谷极化。单层CeBrI表现出面内磁各向异性(IMA),但极轻微的压缩双轴应变(小于-1%)可以诱导IMA向pma转变,在-1%压缩应变下,价(导)带的双极谷极化为61.8 (80.2 meV)。压缩应变增加了主要由Ce-d和I-p电子贡献的PMA,由于自旋-轨道耦合减弱而降低了谷极化,但谷极化仍然相当大。有趣的是,在-1%(-2%)压缩应变下,谷位于价带最大值,导致CeBrI (CeClI)的AVHE。我们目前的工作突出了二维CeClI和CeBrI中强大的高TC,大双极谷极化和AVHE,这将刺激对自旋电子和谷电子应用的f电子Janus铁谷系统的广泛研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Room-temperature bipolar ferrovalley semiconductors and anomalous valley Hall effect in Janus CeClI and CeBrI
Ferrovalley materials with perpendicular magnetic anisotropy (PMA), high Curie temperature (TC) and large valley polarization are very crucial to spintronic and valleytronic applications. We herein propose two 2D f-electron Janus CeClI and CeBrI with strong spin-orbit coupling, and use first-principles calculations, Monte Carlo simulations and Wannier functions to investigate the magnetic anisotropy, magnetic transition temperature, valley characteristic and anomalous valley Hall effect (AVHE). Both CeClI and CeBrI monolayers are found to be above-room-temperature ferromagnetic semiconductors with TCs of 468 and 418 K, respectively, which are robust to biaxial strain. Monolayer CeClI possesses the PMA and the spontaneous bipolar valley polarization of 54.5 (75.4) meV at the valence (conduction) band. Monolayer CeBrI exhibits the in-plane magnetic anisotropy (IMA), but a very slight compressive biaxial strain (less than −1 %) can induce the IMA-to-PMA transition with the bipolar valley polarization of 61.8 (80.2 meV) at the valence (conduction) band under −1 % compressive strain. The compressive strain increases the PMA mainly contributed by Ce-d and I-p electrons, and decreases the valley polarization due to the weakened spin-orbit coupling, but the valley polarization is still considerable. Interestingly, under only −1 % (−2 %) compressive strain, the valley locates at the valence band maximum, leading to the AVHE for CeBrI (CeClI). Our present work highlights the robust high TC, large bipolar valley polarization and AVHE in 2D CeClI and CeBrI, which will stimulate extensive studies on f-electron Janus ferrovalley systems for spintronic and valleytronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信