Phonon-electron decoupling enables ultralow thermal conductivity in YCl3 & Te-doped Mg3.2Sb1.5Bi0.5

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jing-xuan Liang , Si-tong Luo , Zhi-bo Wei , Tao Wang , Yun-tian Jiang , Ling-xi Dong , Shu-Qi Zheng , Wei-yu Song , Hong-chao Wang
{"title":"Phonon-electron decoupling enables ultralow thermal conductivity in YCl3 & Te-doped Mg3.2Sb1.5Bi0.5","authors":"Jing-xuan Liang ,&nbsp;Si-tong Luo ,&nbsp;Zhi-bo Wei ,&nbsp;Tao Wang ,&nbsp;Yun-tian Jiang ,&nbsp;Ling-xi Dong ,&nbsp;Shu-Qi Zheng ,&nbsp;Wei-yu Song ,&nbsp;Hong-chao Wang","doi":"10.1016/j.mtphys.2025.101747","DOIUrl":null,"url":null,"abstract":"<div><div>Mg<sub>3</sub>Sb<sub>2</sub>-based thermoelectric materials are widely recognized as highly promising functional materials due to their cost-effectiveness, non-toxicity, and environmental friendliness. In this study, a synergistic doping strategy involving YCl<sub>3</sub> &amp; Te was implemented, achieving a peak ZT value of 1.83 at 723K in the Mg<sub>3.2</sub>Sb<sub>1.5</sub>Bi<sub>0.49</sub>Te<sub>0.01</sub> + 1 % YCl<sub>3</sub> composition. First-principles calculations demonstrate that YCl<sub>3</sub> &amp; Te co-doping precisely modulates the Fermi level position, facilitating n-type conduction behavior. Simultaneously, the substitution of Sb by Cl induces lattice contraction, while the doping-driven \"avoided crossing\" effect collectively suppresses phonon transport, resulting in an ultralow lattice thermal conductivity of 0.27 W m<sup>−1</sup> K<sup>−1</sup>. Moreover, the incorporation of YCl<sub>3</sub> &amp; Te significantly improves the deformation resistance of Mg<sub>3</sub>Sb<sub>2</sub>, enhancing its suitability for subsequent material processing and device integration. Finite element analysis predicts that the energy conversion efficiency of the Mg<sub>3.2</sub>Sb<sub>1.5</sub>Bi<sub>0.49</sub>Te<sub>0.01</sub> + 1 % YCl<sub>3</sub> sample exceeds 11 % under a temperature gradient of 423K. This work provides new insights into the phonon-electron decoupling mechanism in Mg<sub>3</sub>Sb<sub>2</sub>-based thermoelectric materials through the synergistic regulation of band engineering and phonon engineering.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"55 ","pages":"Article 101747"},"PeriodicalIF":10.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001038","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mg3Sb2-based thermoelectric materials are widely recognized as highly promising functional materials due to their cost-effectiveness, non-toxicity, and environmental friendliness. In this study, a synergistic doping strategy involving YCl3 & Te was implemented, achieving a peak ZT value of 1.83 at 723K in the Mg3.2Sb1.5Bi0.49Te0.01 + 1 % YCl3 composition. First-principles calculations demonstrate that YCl3 & Te co-doping precisely modulates the Fermi level position, facilitating n-type conduction behavior. Simultaneously, the substitution of Sb by Cl induces lattice contraction, while the doping-driven "avoided crossing" effect collectively suppresses phonon transport, resulting in an ultralow lattice thermal conductivity of 0.27 W m−1 K−1. Moreover, the incorporation of YCl3 & Te significantly improves the deformation resistance of Mg3Sb2, enhancing its suitability for subsequent material processing and device integration. Finite element analysis predicts that the energy conversion efficiency of the Mg3.2Sb1.5Bi0.49Te0.01 + 1 % YCl3 sample exceeds 11 % under a temperature gradient of 423K. This work provides new insights into the phonon-electron decoupling mechanism in Mg3Sb2-based thermoelectric materials through the synergistic regulation of band engineering and phonon engineering.
声子-电子去耦实现了YCl3和te掺杂Mg3.2Sb1.5Bi0.5的超低导热性
mg3sb2基热电材料因其性价比高、无毒、环保等优点而被广泛认为是极具发展前景的功能材料。在本研究中,一种涉及YCl3 &;在Mg3.2Sb1.5Bi0.49Te0.01 + 1% YCl3组合物中,在723K时ZT峰值为1.83。第一性原理计算表明YCl3 &;共掺杂可精确调节费米能级位置,促进n型导电行为。同时,Sb被Cl取代导致晶格收缩,而掺杂驱动的“避免交叉”效应共同抑制声子输运,导致晶格导热系数为0.27 W m-1 K-1。此外,YCl3 &;Te显著提高了Mg3Sb2的抗变形能力,增强了其后续材料加工和器件集成的适用性。有限元分析预测,在423K温度梯度下,Mg3.2Sb1.5Bi0.49Te0.01 + 1% YCl3样品的能量转换效率超过11%。本研究通过波段工程和声子工程的协同调控,为mg3sb2基热电材料的声子-电子去耦机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信