Life Science Alliance最新文献

筛选
英文 中文
Message from the new Executive Editor. 来自新任执行编辑的信息。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-04-22 Print Date: 2025-05-01 DOI: 10.26508/lsa.202503362
Tim Fessenden
{"title":"Message from the new Executive Editor.","authors":"Tim Fessenden","doi":"10.26508/lsa.202503362","DOIUrl":"https://doi.org/10.26508/lsa.202503362","url":null,"abstract":"","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144042782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The MFN2 Q367H variant reveals a novel pathomechanism connected to mtDNA-mediated inflammation. MFN2 Q367H变异揭示了与mtdna介导的炎症相关的一种新的病理机制。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-04-02 Print Date: 2025-06-01 DOI: 10.26508/lsa.202402921
Mashiat Zaman, Govinda Sharma, Walaa Almutawa, Tyler Gb Soule, Rasha Sabouny, Matt Joel, Armaan Mohan, Cole Chute, Jeffrey T Joseph, Gerald Pfeffer, Timothy E Shutt
{"title":"The MFN2 Q367H variant reveals a novel pathomechanism connected to mtDNA-mediated inflammation.","authors":"Mashiat Zaman, Govinda Sharma, Walaa Almutawa, Tyler Gb Soule, Rasha Sabouny, Matt Joel, Armaan Mohan, Cole Chute, Jeffrey T Joseph, Gerald Pfeffer, Timothy E Shutt","doi":"10.26508/lsa.202402921","DOIUrl":"10.26508/lsa.202402921","url":null,"abstract":"<p><p>Pathogenic variants in the mitochondrial protein MFN2 are typically associated with a peripheral neuropathy phenotype, but can also cause a variety of additional pathologies including myopathy. Here, we identified an uncharacterized MFN2 variant, Q367H, in a patient diagnosed with late-onset distal myopathy, but without peripheral neuropathy. Supporting the hypothesis that this variant contributes to the patient's pathology, patient fibroblasts and transdifferentiated myoblasts showed changes consistent with impairment of several MFN2 functions. We also observed mtDNA outside of the mitochondrial network that colocalized with early endosomes, and measured activation of both TLR9 and cGAS-STING inflammation pathways that sense mtDNA. Re-expressing the Q367H variant in MFN2 KO cells also induced mtDNA release, demonstrating this phenotype is a direct result of the variant. As elevated inflammation can cause myopathy, our findings linking the Q367H MFN2 variant with elevated TLR9 and cGAS-STING signalling can explain the patient's myopathy. Thus, we characterize a novel MFN2 variant in a patient with an atypical presentation that separates peripheral neuropathy and myopathy phenotypes, and establish a potential pathomechanism connecting MFN2 dysfunction to mtDNA-mediated inflammation.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 6","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143772687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divergent Plasmodium kinases drive MTOC, kinetochore and axoneme organisation in male gametogenesis. 在雄性配子体发生中,不同的疟原虫激酶驱动MTOC、着丝点和轴体组织。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-03-24 Print Date: 2025-06-01 DOI: 10.26508/lsa.202403056
Ryuji Yanase, Mohammad Zeeshan, David Jp Ferguson, Robert Markus, Declan Brady, Andrew R Bottrill, Anthony A Holder, David S Guttery, Rita Tewari
{"title":"Divergent <i>Plasmodium</i> kinases drive MTOC, kinetochore and axoneme organisation in male gametogenesis.","authors":"Ryuji Yanase, Mohammad Zeeshan, David Jp Ferguson, Robert Markus, Declan Brady, Andrew R Bottrill, Anthony A Holder, David S Guttery, Rita Tewari","doi":"10.26508/lsa.202403056","DOIUrl":"10.26508/lsa.202403056","url":null,"abstract":"<p><p>Sexual development and male gamete formation of the malaria parasite in the mosquito midgut are initiated by rapid endomitosis in the activated male gametocyte. This process is highly regulated by protein phosphorylation, specifically by three divergent male-specific protein kinases (PKs): CDPK4, SRPK1, and MAP2. Here, we localise each PK during male gamete formation using live-cell imaging, identify their putative interacting partners by immunoprecipitation, and determine the morphological consequences of their absence using ultrastructure expansion and transmission electron microscopy. Each PK has a distinct location in either the nuclear or the cytoplasmic compartment. Protein interaction studies revealed that CDPK4 and MAP2 interact with key drivers of rapid DNA replication, whereas SRPK1 is involved in RNA translation. The absence of each PK results in severe defects in either microtubule-organising centre organisation, kinetochore segregation, or axoneme formation. This study reveals the crucial role of these PKs during endomitosis in formation of the flagellated male gamete and uncovers some of their interacting partners that may drive this process.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 6","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143700750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid-driven Src self-association modulates its transformation capacity. 脂质驱动的Src自关联调节其转化能力。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-03-13 Print Date: 2025-05-01 DOI: 10.26508/lsa.202403019
Irrem-Laareb Mohammad, Marina I Giannotti, Elise Fourgous, Yvan Boublik, Alejandro Fernández, Anabel-Lise Le Roux, Audrey Sirvent, Marta Taulés, Serge Roche, Miquel Pons
{"title":"Lipid-driven Src self-association modulates its transformation capacity.","authors":"Irrem-Laareb Mohammad, Marina I Giannotti, Elise Fourgous, Yvan Boublik, Alejandro Fernández, Anabel-Lise Le Roux, Audrey Sirvent, Marta Taulés, Serge Roche, Miquel Pons","doi":"10.26508/lsa.202403019","DOIUrl":"10.26508/lsa.202403019","url":null,"abstract":"<p><p>Src tyrosine kinase regulates cell growth and adhesion through membrane signaling, and its deregulation is associated with cancer. Although active Src is anchored to the plasma membrane, the role of membrane lipids in its regulation remains unclear. Here, we report that Src self-associates via a lysine cluster in its SH4 region, a process mediated by lipids in human cells and in vitro. Mutation of the lysine cluster to arginine alters Src self-association and modulates its transforming function in human cells. Lipid-anchored micron-sized condensates of full-length Src form in supported homogeneous lipid bilayers (i.e., independently of lipid phase separation). Condensates also arise from the purified Src N-terminal regulatory element, which includes the myristoylated SH4 domain, the intrinsically disordered Unique domain, and the globular SH3 domain. However, the isolated SH4 domain alone forms small protein-lipid clusters rather than micron-sized condensates. Our findings reveal lipid-mediated kinase self-association as an additional regulatory mechanism for Src. This mechanism may also apply to other membrane-associated signaling proteins containing similar lysine clusters in their unstructured regions.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The late-onset Alzheimer's disease risk factor RHBDF2 is a modifier of microglial TREM2 proteolysis. 晚发性阿尔茨海默病风险因子 RHBDF2 是小胶质细胞 TREM2 蛋白溶解的调节因子。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-03-13 Print Date: 2025-05-01 DOI: 10.26508/lsa.202403080
Georg Jocher, Gozde Ozcelik, Stephan A Müller, Hung-En Hsia, Miranda Lastra Osua, Laura I Hofmann, Marlene Aßfalg, Lina Dinkel, Xiao Feng, Kai Schlepckow, Michael Willem, Christian Haass, Sabina Tahirovic, Carl P Blobel, Stefan F Lichtenthaler
{"title":"The late-onset Alzheimer's disease risk factor RHBDF2 is a modifier of microglial TREM2 proteolysis.","authors":"Georg Jocher, Gozde Ozcelik, Stephan A Müller, Hung-En Hsia, Miranda Lastra Osua, Laura I Hofmann, Marlene Aßfalg, Lina Dinkel, Xiao Feng, Kai Schlepckow, Michael Willem, Christian Haass, Sabina Tahirovic, Carl P Blobel, Stefan F Lichtenthaler","doi":"10.26508/lsa.202403080","DOIUrl":"10.26508/lsa.202403080","url":null,"abstract":"<p><p>The cell surface receptor TREM2 is a key genetic risk factor and drug target in Alzheimer's disease (AD). In the brain, TREM2 is expressed in microglia, where it undergoes proteolytic cleavage, linked to AD risk, but the responsible protease in microglia is still unknown. Another microglial-expressed AD risk factor is catalytically inactive rhomboid 2 (iRhom2, RHBDF2), which binds to and acts as a non-catalytic subunit of the metalloprotease ADAM17. A potential role in TREM2 proteolysis is not yet known. Using microglial-like BV2 cells, bone marrow-derived macrophages, and primary murine microglia, we identify iRhom2 as a modifier of ADAM17-mediated TREM2 shedding. Loss of iRhom2 increased TREM2 in cell lysates and at the cell surface and enhanced TREM2 signaling and microglial phagocytosis of the amyloid β-peptide (Aβ). This study establishes ADAM17 as a physiological TREM2 protease in microglia and suggests iRhom2 as a potential drug target for modulating TREM2 proteolysis in AD.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143624692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical forces and ligand binding modulate Pseudomonas aeruginosa PilY1 mechanosensitive protein. 机械力和配体结合调节铜绿假单胞菌PilY1机械敏感蛋白。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-03-07 Print Date: 2025-05-01 DOI: 10.26508/lsa.202403111
Francisco J Cao-Garcia, Jane E Walker, Stephanie Board, Alvaro Alonso-Caballero
{"title":"Mechanical forces and ligand binding modulate <i>Pseudomonas aeruginosa</i> PilY1 mechanosensitive protein.","authors":"Francisco J Cao-Garcia, Jane E Walker, Stephanie Board, Alvaro Alonso-Caballero","doi":"10.26508/lsa.202403111","DOIUrl":"10.26508/lsa.202403111","url":null,"abstract":"<p><p>Surface sensing initiates bacterial colonization of substrates. The protein PilY1 plays key roles during this process-surface detection, host adhesion, and motility-while experiencing mechanical perturbations of varying magnitudes. In <i>Pseudomonas aeruginosa</i>, the adhesion and motility functions of PilY1 are associated with integrin and calcium ligand-binding sites; however, how mechanical forces influence PilY1's dynamics and its interactions with these ligands remain unknown. Here, using single-molecule magnetic tweezers, we reveal that PilY1 is a mechanosensor protein that exhibits different behaviors depending on the force load. At high forces (>20 pN), PilY1 unfolds through a hierarchical sequence of intermediates, whose mechanical stability increases with calcium binding. This enhanced stability may help counteract type IV pilus retraction forces during motility. At low forces (<7 pN), we identify the dynamics of the integrin-binding domain, which is reminiscent of the behavior of mechanosensor proteins. Integrin binding induces a force-dependent conformational change in this domain, shortening its unfolded extension. Our findings suggest that PilY1 roles are force- and ligand-modulated, which could entail a mechanical-based compartmentalization of its functions.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MDC1 mediates Pellino recruitment to sites of DNA double-strand breaks. MDC1介导Pellino招募到DNA双链断裂位点。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-03-06 Print Date: 2025-05-01 DOI: 10.26508/lsa.202403074
Mònica Torres Esteban, Matthew J Stewart, Eilis Bragginton, Alice Meroni, Annica Pellizzari, Alain Jeanrenaud, Stephen J Smerdon, Manuel Stucki
{"title":"MDC1 mediates Pellino recruitment to sites of DNA double-strand breaks.","authors":"Mònica Torres Esteban, Matthew J Stewart, Eilis Bragginton, Alice Meroni, Annica Pellizzari, Alain Jeanrenaud, Stephen J Smerdon, Manuel Stucki","doi":"10.26508/lsa.202403074","DOIUrl":"10.26508/lsa.202403074","url":null,"abstract":"<p><p>Ubiquitylation is critically implicated in the recognition and repair of DNA double-strand breaks. The adaptor protein MDC1 mediates the recruitment of the key DNA damage responsive E3 ubiquitin ligase RNF8 to the break sites. It does so by directly interacting with RNF8 in a phosphorylation-dependent manner that involves the RNF8 FHA domain, thus initiating targeted chromatin ubiquitylation at the break sites. Here, we report that MDC1 also directly binds to two additional E3 ubiquitin ligases, Pellino 1 and 2, which were recently implicated in the DNA damage response. Through a combination of biochemical, biophysical and X-ray crystallographic approaches, we reveal the molecular details of the MDC1-Pellino complexes. Furthermore, we show that in mammalian cells, MDC1 mediates Pellino recruitment to sites of DNA double-strand breaks by a direct phosphorylation-dependent interaction between the two proteins. Taken together, our findings provide new molecular insights into the ubiquitylation pathways that govern genome stability maintenance.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversible and effective cell cycle synchronization method for studying stage-specific processes. 可逆和有效的细胞周期同步方法研究阶段特异性过程。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-03-04 Print Date: 2025-05-01 DOI: 10.26508/lsa.202403000
Yu-Lin Chen, Syon Reddy, Aussie Suzuki
{"title":"Reversible and effective cell cycle synchronization method for studying stage-specific processes.","authors":"Yu-Lin Chen, Syon Reddy, Aussie Suzuki","doi":"10.26508/lsa.202403000","DOIUrl":"10.26508/lsa.202403000","url":null,"abstract":"<p><p>The cell cycle is a crucial process for cell proliferation, differentiation, and development. Numerous genes and proteins play pivotal roles at specific cell cycle stages to ensure precise regulation of these events. Understanding the stage-specific regulations of the cell cycle requires the accumulation of cell populations at desired cell cycle stages, typically achieved through cell cycle synchronization using kinase and protein inhibitors. However, suboptimal concentrations of these inhibitors can result in inefficiencies, irreversibility, and unintended cellular defects. In this study, we have optimized effective and reversible cell cycle synchronization protocols for human RPE1 cells by combining high-precision cell cycle identification techniques with high-temporal resolution live-cell imaging. These reproducible synchronization methods offer powerful tools for dissecting cell cycle stage-specific regulatory mechanisms.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ISR-independent role of GCN2 prevents excessive ribosome biogenesis and mRNA translation. GCN2不依赖于isr的作用可防止过度的核糖体生物发生和mRNA翻译。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-03-03 Print Date: 2025-05-01 DOI: 10.26508/lsa.202403014
Mónica Román-Trufero, Istvan T Kleijn, Kevin Blighe, Jinglin Zhou, Paula Saavedra-García, Abigail Gaffar, Marilena Christoforou, Axel Bellotti, Joel Abrahams, Abdelmadjid Atrih, Douglas Lamont, Marek Gierlinski, Pooja Jayaprakash, Audrey M Michel, Eric O Aboagye, Mariia Yuneva, Glenn R Masson, Vahid Shahrezaei, Holger W Auner
{"title":"An ISR-independent role of GCN2 prevents excessive ribosome biogenesis and mRNA translation.","authors":"Mónica Román-Trufero, Istvan T Kleijn, Kevin Blighe, Jinglin Zhou, Paula Saavedra-García, Abigail Gaffar, Marilena Christoforou, Axel Bellotti, Joel Abrahams, Abdelmadjid Atrih, Douglas Lamont, Marek Gierlinski, Pooja Jayaprakash, Audrey M Michel, Eric O Aboagye, Mariia Yuneva, Glenn R Masson, Vahid Shahrezaei, Holger W Auner","doi":"10.26508/lsa.202403014","DOIUrl":"10.26508/lsa.202403014","url":null,"abstract":"<p><p>The integrated stress response (ISR) is a corrective physiological programme to restore cellular homeostasis that is based on the attenuation of global protein synthesis and a resource-enhancing transcriptional programme. GCN2 is the oldest of four kinases that are activated by diverse cellular stresses to trigger the ISR and acts as the primary responder to amino acid shortage and ribosome collisions. Here, using a broad multi-omics approach, we uncover an ISR-independent role of GCN2. GCN2 inhibition or depletion in the absence of discernible stress causes excessive protein synthesis and ribosome biogenesis, perturbs the cellular translatome, and results in a dynamic and broad loss of metabolic homeostasis. Cancer cells that rely on GCN2 to keep protein synthesis in check under conditions of full nutrient availability depend on GCN2 for survival and unrestricted tumour growth. Our observations describe an ISR-independent role of GCN2 in regulating the cellular proteome and translatome and suggest new avenues for cancer therapies based on unleashing excessive mRNA translation.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143542476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic dysregulation contributes to the development of dysferlinopathy. 代谢失调有助于异常蛋白病的发展。
IF 3.3 2区 生物学
Life Science Alliance Pub Date : 2025-02-28 Print Date: 2025-05-01 DOI: 10.26508/lsa.202402991
Regula Furrer, Sedat Dilbaz, Stefan A Steurer, Gesa Santos, Bettina Karrer-Cardel, Danilo Ritz, Michael Sinnreich, Christoph Handschin
{"title":"Metabolic dysregulation contributes to the development of dysferlinopathy.","authors":"Regula Furrer, Sedat Dilbaz, Stefan A Steurer, Gesa Santos, Bettina Karrer-Cardel, Danilo Ritz, Michael Sinnreich, Christoph Handschin","doi":"10.26508/lsa.202402991","DOIUrl":"10.26508/lsa.202402991","url":null,"abstract":"<p><p>Dysferlin is a transmembrane protein that plays a prominent role in membrane repair of damaged muscle fibers. Accordingly, mutations in the dysferlin gene cause progressive muscular dystrophies, collectively referred to as dysferlinopathies for which no effective treatment exists. Unexpectedly, experimental approaches that successfully restore membrane repair fail to prevent a dystrophic phenotype, suggesting that additional, hitherto unknown dysferlin-dependent functions contribute to the development of the pathology. Our experiments revealed an altered metabolic phenotype in dysferlin-deficient muscles, characterized by (1) mitochondrial abnormalities and elevated death signaling and (2) increased glucose uptake, reduced glycolytic protein levels, and pronounced glycogen accumulation. Strikingly, elevating mitochondrial volume density and muscle glycogen accelerates disease progression; whereas, improvement of mitochondrial function and recruitment of muscle glycogen with exercise ameliorated functional parameters in a mouse model of dysferlinopathy. Collectively, our results not only shed light on a metabolic function of dysferlin but also imply new therapeutic avenues aimed at promoting mitochondrial function and normalizing muscle glycogen to ameliorate dysferlinopathies, complementing efforts that target membrane repair.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143531715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信