Mechanical forces and ligand binding modulate Pseudomonas aeruginosa PilY1 mechanosensitive protein.

IF 3.3 2区 生物学 Q1 BIOLOGY
Life Science Alliance Pub Date : 2025-03-07 Print Date: 2025-05-01 DOI:10.26508/lsa.202403111
Francisco J Cao-Garcia, Jane E Walker, Stephanie Board, Alvaro Alonso-Caballero
{"title":"Mechanical forces and ligand binding modulate <i>Pseudomonas aeruginosa</i> PilY1 mechanosensitive protein.","authors":"Francisco J Cao-Garcia, Jane E Walker, Stephanie Board, Alvaro Alonso-Caballero","doi":"10.26508/lsa.202403111","DOIUrl":null,"url":null,"abstract":"<p><p>Surface sensing initiates bacterial colonization of substrates. The protein PilY1 plays key roles during this process-surface detection, host adhesion, and motility-while experiencing mechanical perturbations of varying magnitudes. In <i>Pseudomonas aeruginosa</i>, the adhesion and motility functions of PilY1 are associated with integrin and calcium ligand-binding sites; however, how mechanical forces influence PilY1's dynamics and its interactions with these ligands remain unknown. Here, using single-molecule magnetic tweezers, we reveal that PilY1 is a mechanosensor protein that exhibits different behaviors depending on the force load. At high forces (>20 pN), PilY1 unfolds through a hierarchical sequence of intermediates, whose mechanical stability increases with calcium binding. This enhanced stability may help counteract type IV pilus retraction forces during motility. At low forces (<7 pN), we identify the dynamics of the integrin-binding domain, which is reminiscent of the behavior of mechanosensor proteins. Integrin binding induces a force-dependent conformational change in this domain, shortening its unfolded extension. Our findings suggest that PilY1 roles are force- and ligand-modulated, which could entail a mechanical-based compartmentalization of its functions.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202403111","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface sensing initiates bacterial colonization of substrates. The protein PilY1 plays key roles during this process-surface detection, host adhesion, and motility-while experiencing mechanical perturbations of varying magnitudes. In Pseudomonas aeruginosa, the adhesion and motility functions of PilY1 are associated with integrin and calcium ligand-binding sites; however, how mechanical forces influence PilY1's dynamics and its interactions with these ligands remain unknown. Here, using single-molecule magnetic tweezers, we reveal that PilY1 is a mechanosensor protein that exhibits different behaviors depending on the force load. At high forces (>20 pN), PilY1 unfolds through a hierarchical sequence of intermediates, whose mechanical stability increases with calcium binding. This enhanced stability may help counteract type IV pilus retraction forces during motility. At low forces (<7 pN), we identify the dynamics of the integrin-binding domain, which is reminiscent of the behavior of mechanosensor proteins. Integrin binding induces a force-dependent conformational change in this domain, shortening its unfolded extension. Our findings suggest that PilY1 roles are force- and ligand-modulated, which could entail a mechanical-based compartmentalization of its functions.

表面感应启动了细菌在底物上的定殖。在这一过程中,蛋白质 PilY1 发挥着关键作用--表面检测、宿主粘附和运动--同时经历不同程度的机械扰动。在铜绿假单胞菌中,PilY1 的粘附和运动功能与整合素和钙配体结合位点有关;然而,机械力如何影响 PilY1 的动力学及其与这些配体的相互作用仍是未知数。在这里,我们利用单分子磁镊揭示了 PilY1 是一种机械传感器蛋白,它会根据不同的力负荷表现出不同的行为。在高力(大于 20 pN)作用下,PilY1 通过中间体的分层序列展开,其机械稳定性随着钙结合而增加。这种稳定性的增强可能有助于抵消运动过程中的 IV 型柔毛回缩力。在低作用力(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信