Cecilia S Blengini, Shuang Tang, Robert J Mendola, G John Garrisi, Jason E Swain, Karen Schindler
{"title":"AURKA通过HEC1磷酸化控制卵母细胞纺锤体组装检查点和染色体排列。","authors":"Cecilia S Blengini, Shuang Tang, Robert J Mendola, G John Garrisi, Jason E Swain, Karen Schindler","doi":"10.26508/lsa.202403146","DOIUrl":null,"url":null,"abstract":"<p><p>In human oocytes, meiosis I is error-prone, causing early miscarriages and developmental disorders. The Aurora protein kinases are key regulators of chromosome segregation in mitosis and meiosis, and their dysfunction is associated with aneuploidy. Oocytes express three Aurora kinase (AURK) proteins, but only AURKA is necessary and sufficient to support oocyte meiosis in mice. However, the unique molecular contributions to ensuring high egg quality of AURKA remain unclear. Here, using a combination of genetic and pharmacological approaches, we evaluated how AURKA phosphorylation regulates outer kinetochore function during oocyte meiosis. We found that the outer kinetochore protein Ndc80/HEC1 is constitutively phosphorylated at multiple residues by Aurora kinases during meiosis I, but that serine 69 is specifically phosphorylated by AURKA in mouse and human oocytes. We further show that serine 69 phosphorylation contributes to spindle assembly checkpoint activation and chromosome alignment during meiosis I. These results provide a fundamental mechanistic understanding of how AURKA regulates meiosis and kinetochore function to ensure meiosis I fidelity.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056248/pdf/","citationCount":"0","resultStr":"{\"title\":\"AURKA controls oocyte spindle assembly checkpoint and chromosome alignment by HEC1 phosphorylation.\",\"authors\":\"Cecilia S Blengini, Shuang Tang, Robert J Mendola, G John Garrisi, Jason E Swain, Karen Schindler\",\"doi\":\"10.26508/lsa.202403146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In human oocytes, meiosis I is error-prone, causing early miscarriages and developmental disorders. The Aurora protein kinases are key regulators of chromosome segregation in mitosis and meiosis, and their dysfunction is associated with aneuploidy. Oocytes express three Aurora kinase (AURK) proteins, but only AURKA is necessary and sufficient to support oocyte meiosis in mice. However, the unique molecular contributions to ensuring high egg quality of AURKA remain unclear. Here, using a combination of genetic and pharmacological approaches, we evaluated how AURKA phosphorylation regulates outer kinetochore function during oocyte meiosis. We found that the outer kinetochore protein Ndc80/HEC1 is constitutively phosphorylated at multiple residues by Aurora kinases during meiosis I, but that serine 69 is specifically phosphorylated by AURKA in mouse and human oocytes. We further show that serine 69 phosphorylation contributes to spindle assembly checkpoint activation and chromosome alignment during meiosis I. These results provide a fundamental mechanistic understanding of how AURKA regulates meiosis and kinetochore function to ensure meiosis I fidelity.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"8 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056248/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202403146\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202403146","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
AURKA controls oocyte spindle assembly checkpoint and chromosome alignment by HEC1 phosphorylation.
In human oocytes, meiosis I is error-prone, causing early miscarriages and developmental disorders. The Aurora protein kinases are key regulators of chromosome segregation in mitosis and meiosis, and their dysfunction is associated with aneuploidy. Oocytes express three Aurora kinase (AURK) proteins, but only AURKA is necessary and sufficient to support oocyte meiosis in mice. However, the unique molecular contributions to ensuring high egg quality of AURKA remain unclear. Here, using a combination of genetic and pharmacological approaches, we evaluated how AURKA phosphorylation regulates outer kinetochore function during oocyte meiosis. We found that the outer kinetochore protein Ndc80/HEC1 is constitutively phosphorylated at multiple residues by Aurora kinases during meiosis I, but that serine 69 is specifically phosphorylated by AURKA in mouse and human oocytes. We further show that serine 69 phosphorylation contributes to spindle assembly checkpoint activation and chromosome alignment during meiosis I. These results provide a fundamental mechanistic understanding of how AURKA regulates meiosis and kinetochore function to ensure meiosis I fidelity.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.