Georg Jocher, Gozde Ozcelik, Stephan A Müller, Hung-En Hsia, Miranda Lastra Osua, Laura I Hofmann, Marlene Aßfalg, Lina Dinkel, Xiao Feng, Kai Schlepckow, Michael Willem, Christian Haass, Sabina Tahirovic, Carl P Blobel, Stefan F Lichtenthaler
{"title":"晚发性阿尔茨海默病风险因子 RHBDF2 是小胶质细胞 TREM2 蛋白溶解的调节因子。","authors":"Georg Jocher, Gozde Ozcelik, Stephan A Müller, Hung-En Hsia, Miranda Lastra Osua, Laura I Hofmann, Marlene Aßfalg, Lina Dinkel, Xiao Feng, Kai Schlepckow, Michael Willem, Christian Haass, Sabina Tahirovic, Carl P Blobel, Stefan F Lichtenthaler","doi":"10.26508/lsa.202403080","DOIUrl":null,"url":null,"abstract":"<p><p>The cell surface receptor TREM2 is a key genetic risk factor and drug target in Alzheimer's disease (AD). In the brain, TREM2 is expressed in microglia, where it undergoes proteolytic cleavage, linked to AD risk, but the responsible protease in microglia is still unknown. Another microglial-expressed AD risk factor is catalytically inactive rhomboid 2 (iRhom2, RHBDF2), which binds to and acts as a non-catalytic subunit of the metalloprotease ADAM17. A potential role in TREM2 proteolysis is not yet known. Using microglial-like BV2 cells, bone marrow-derived macrophages, and primary murine microglia, we identify iRhom2 as a modifier of ADAM17-mediated TREM2 shedding. Loss of iRhom2 increased TREM2 in cell lysates and at the cell surface and enhanced TREM2 signaling and microglial phagocytosis of the amyloid β-peptide (Aβ). This study establishes ADAM17 as a physiological TREM2 protease in microglia and suggests iRhom2 as a potential drug target for modulating TREM2 proteolysis in AD.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909414/pdf/","citationCount":"0","resultStr":"{\"title\":\"The late-onset Alzheimer's disease risk factor RHBDF2 is a modifier of microglial TREM2 proteolysis.\",\"authors\":\"Georg Jocher, Gozde Ozcelik, Stephan A Müller, Hung-En Hsia, Miranda Lastra Osua, Laura I Hofmann, Marlene Aßfalg, Lina Dinkel, Xiao Feng, Kai Schlepckow, Michael Willem, Christian Haass, Sabina Tahirovic, Carl P Blobel, Stefan F Lichtenthaler\",\"doi\":\"10.26508/lsa.202403080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cell surface receptor TREM2 is a key genetic risk factor and drug target in Alzheimer's disease (AD). In the brain, TREM2 is expressed in microglia, where it undergoes proteolytic cleavage, linked to AD risk, but the responsible protease in microglia is still unknown. Another microglial-expressed AD risk factor is catalytically inactive rhomboid 2 (iRhom2, RHBDF2), which binds to and acts as a non-catalytic subunit of the metalloprotease ADAM17. A potential role in TREM2 proteolysis is not yet known. Using microglial-like BV2 cells, bone marrow-derived macrophages, and primary murine microglia, we identify iRhom2 as a modifier of ADAM17-mediated TREM2 shedding. Loss of iRhom2 increased TREM2 in cell lysates and at the cell surface and enhanced TREM2 signaling and microglial phagocytosis of the amyloid β-peptide (Aβ). This study establishes ADAM17 as a physiological TREM2 protease in microglia and suggests iRhom2 as a potential drug target for modulating TREM2 proteolysis in AD.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909414/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202403080\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202403080","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The late-onset Alzheimer's disease risk factor RHBDF2 is a modifier of microglial TREM2 proteolysis.
The cell surface receptor TREM2 is a key genetic risk factor and drug target in Alzheimer's disease (AD). In the brain, TREM2 is expressed in microglia, where it undergoes proteolytic cleavage, linked to AD risk, but the responsible protease in microglia is still unknown. Another microglial-expressed AD risk factor is catalytically inactive rhomboid 2 (iRhom2, RHBDF2), which binds to and acts as a non-catalytic subunit of the metalloprotease ADAM17. A potential role in TREM2 proteolysis is not yet known. Using microglial-like BV2 cells, bone marrow-derived macrophages, and primary murine microglia, we identify iRhom2 as a modifier of ADAM17-mediated TREM2 shedding. Loss of iRhom2 increased TREM2 in cell lysates and at the cell surface and enhanced TREM2 signaling and microglial phagocytosis of the amyloid β-peptide (Aβ). This study establishes ADAM17 as a physiological TREM2 protease in microglia and suggests iRhom2 as a potential drug target for modulating TREM2 proteolysis in AD.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.