Life Science AlliancePub Date : 2024-07-31Print Date: 2024-10-01DOI: 10.26508/lsa.202402651
Youhei Egami, Katsuhisa Kawai, Nobukazu Araki
{"title":"Rit1-TBC1D10B signaling modulates FcγR-mediated phagosome formation in RAW264 macrophages.","authors":"Youhei Egami, Katsuhisa Kawai, Nobukazu Araki","doi":"10.26508/lsa.202402651","DOIUrl":"10.26508/lsa.202402651","url":null,"abstract":"<p><p>Phagocytosis is an important immune response that protects the host from pathogen invasion. Rit1 GTPase is known to be involved in diverse cellular processes. However, its role in FcγR-mediated phagocytosis remains unclear. Our live-cell imaging analysis revealed that Rit1 was localized to the membranes of F-actin-rich phagocytic cups in RAW264 macrophages. Rit1 knockout and expression of the GDP-locked Rit1 mutant suppressed phagosome formation. We also found that TBC1D10B, a GAP for the Rab family GTPases, colocalizes with Rit1 in the membranes of phagocytic cups. Expression and knockout studies have shown that TBC1D10B decreases phagosome formation in both Rab-GAP activity-dependent and -independent manners. Notably, the expression of the GDP-locked Rit1 mutant or Rit1 knockout inhibited the dissociation of TBC1D10B from phagocytic cups. In addition, the expression of the GTP-locked Rit1 mutant promoted the dissociation of TBC1D10B in phagocytic cups and restored the rate of phagosome formation in TBC1D10B-expressing cells. These data suggest that Rit1-TBC1D10B signaling regulates FcγR-mediated phagosome formation in macrophages.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential roles of lysosomal cholesterol transporters in the development of <i>C. elegans</i> NMJs.","authors":"Amin Guo, Qi Wu, Xin Yan, Kanghua Chen, Yuxiang Liu, Dingfa Liang, Yuxiao Yang, Qunfeng Luo, Mingtao Xiong, Yong Yu, Erkang Fei, Fei Chen","doi":"10.26508/lsa.202402584","DOIUrl":"10.26508/lsa.202402584","url":null,"abstract":"<p><p>Cholesterol homeostasis in neurons is critical for synapse formation and maintenance. Neurons with impaired cholesterol uptake undergo progressive synapse loss and eventual degeneration. To investigate the molecular mechanisms of neuronal cholesterol homeostasis and its role during synapse development, we studied motor neurons of <i>Caenorhabditis elegans</i> because these neurons rely on dietary cholesterol. Combining lipidomic analysis, we discovered that NCR-1, a lysosomal cholesterol transporter, promotes cholesterol absorption and synapse development. Loss of <i>ncr-1</i> causes smaller synapses, and low cholesterol exacerbates the deficits. Moreover, NCR-1 deficiency hinders the increase in synapses under high cholesterol. Unexpectedly, NCR-2, the NCR-1 homolog, increases the use of cholesterol and sphingomyelins and impedes synapse formation. NCR-2 deficiency causes an increase in synapses regardless of cholesterol concentration. Inhibiting the degradation or synthesis of sphingomyelins can induce or suppress the synaptic phenotypes in <i>ncr-2</i> mutants. Our findings indicate that neuronal cholesterol homeostasis is differentially controlled by two lysosomal cholesterol transporters and highlight the importance of neuronal cholesterol homeostasis in synapse development.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Golgi pH homeostasis stabilizes the lysosomal membrane through <i>N</i>-glycosylation of membrane proteins.","authors":"Yu-Shin Sou, Junji Yamaguchi, Keisuke Masuda, Yasuo Uchiyama, Yusuke Maeda, Masato Koike","doi":"10.26508/lsa.202402677","DOIUrl":"10.26508/lsa.202402677","url":null,"abstract":"<p><p>Protein glycosylation plays a vital role in various cellular functions, many of which occur within the Golgi apparatus. The Golgi pH regulator (GPHR) is essential for the proper functioning of the Golgi apparatus. The lysosomal membrane contains highly glycosylated membrane proteins in abundance. This study investigated the role of the Golgi luminal pH in <i>N</i>-glycosylation of lysosomal membrane proteins and the effect of this protein modification on membrane stability using <i>Gphr</i>-deficient MEFs. We showed that <i>Gphr</i> deficiency causes an imbalance in the Golgi luminal pH, resulting in abnormal protein <i>N</i>-glycosylation, indicated by a reduction in sialylated glycans and markedly reduced molecular weight of glycoproteins. Further experiments using FRAP and PLA revealed that <i>Gphr</i> deficiency prevented the trafficking dynamics and proximity condition of glycosyltransferases in the Golgi apparatus. In addition, incomplete <i>N</i>-glycosylation of lysosomal membrane proteins affected lysosomal membrane stability, as demonstrated by the increased susceptibility to lysosomal damage. Thus, this study highlights the critical role of Golgi pH regulation in controlling protein glycosylation and the impact of Golgi dysfunction on lysosomal membrane stability.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"pyRBDome: a comprehensive computational platform for enhancing RNA-binding proteome data.","authors":"Liang-Cui Chu, Niki Christopoulou, Hugh McCaughan, Sophie Winterbourne, Davide Cazzola, Shichao Wang, Ulad Litvin, Salomé Brunon, Patrick Jb Harker, Iain McNae, Sander Granneman","doi":"10.26508/lsa.202402787","DOIUrl":"10.26508/lsa.202402787","url":null,"abstract":"<p><p>High-throughput proteomics approaches have revolutionised the identification of RNA-binding proteins (RBPome) and RNA-binding sequences (RBDome) across organisms. Yet, the extent of noise, including false positives, associated with these methodologies, is difficult to quantify as experimental approaches for validating the results are generally low throughput. To address this, we introduce pyRBDome, a pipeline for enhancing RNA-binding proteome data in silico. It aligns the experimental results with RNA-binding site (RBS) predictions from distinct machine-learning tools and integrates high-resolution structural data when available. Its statistical evaluation of RBDome data enables quick identification of likely genuine RNA-binders in experimental datasets. Furthermore, by leveraging the pyRBDome results, we have enhanced the sensitivity and specificity of RBS detection through training new ensemble machine-learning models. pyRBDome analysis of a human RBDome dataset, compared with known structural data, revealed that although UV-cross-linked amino acids were more likely to contain predicted RBSs, they infrequently bind RNA in high-resolution structures. This discrepancy underscores the limitations of structural data as benchmarks, positioning pyRBDome as a valuable alternative for increasing confidence in RBDome datasets.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life Science AlliancePub Date : 2024-07-29Print Date: 2024-10-01DOI: 10.26508/lsa.202402670
Thomas Ty Lau, Hoi Tang Ma, Randy Yc Poon
{"title":"Kinesins regulate the heterogeneity in centrosome clustering after whole-genome duplication.","authors":"Thomas Ty Lau, Hoi Tang Ma, Randy Yc Poon","doi":"10.26508/lsa.202402670","DOIUrl":"10.26508/lsa.202402670","url":null,"abstract":"<p><p>After whole-genome duplication (WGD), tetraploid cells can undergo multipolar mitosis or pseudo-bipolar mitosis with clustered centrosomes. Kinesins play a crucial role in regulating spindle formation. However, the contribution of kinesin expression levels to the heterogeneity in centrosome clustering observed across different cell lines after WGD remains unclear. We identified two subsets of cell lines: \"BP\" cells efficiently cluster extra centrosomes for pseudo-bipolar mitosis, and \"MP\" cells primarily undergo multipolar mitosis after WGD. Diploid MP cells contained higher levels of KIF11 and KIF15 compared with BP cells and showed reduced sensitivity to centrosome clustering induced by KIF11 inhibitors. Moreover, partial inhibition of KIF11 or depletion of KIF15 converted MP cells from multipolar to bipolar mitosis after WGD. Multipolar spindle formation involved microtubules but was independent of kinetochore-microtubule attachment. Silencing KIFC1, but not KIFC3, promoted multipolar mitosis in BP cells, indicating the involvement of specific kinesin-14 family members in counteracting the forces from KIF11/KIF15 after WGD. These findings highlight the collective role of KIF11, KIF15, and KIFC1 in determining the polarity of the mitotic spindle after WGD.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life Science AlliancePub Date : 2024-07-29Print Date: 2024-10-01DOI: 10.26508/lsa.202402826
Ingrid Augusto, Wendell Girard-Dias, Alejandra Schoijet, Guillermo Daniel Alonso, Rodrigo V Portugal, Wanderley de Souza, Veronica Jimenez, Kildare Miranda
{"title":"Quantitative assessment of the nanoanatomy of the contractile vacuole complex in <i>Trypanosoma cruzi</i>.","authors":"Ingrid Augusto, Wendell Girard-Dias, Alejandra Schoijet, Guillermo Daniel Alonso, Rodrigo V Portugal, Wanderley de Souza, Veronica Jimenez, Kildare Miranda","doi":"10.26508/lsa.202402826","DOIUrl":"10.26508/lsa.202402826","url":null,"abstract":"<p><p><i>Trypanosoma cruzi</i> uses various mechanisms to cope with osmotic fluctuations during infection, including the remodeling of organelles such as the contractile vacuole complex (CVC). Little is known about the morphological changes of the CVC during pulsation cycles occurring upon osmotic stress. Here, we investigated the structure-function relationship between the CVC and the flagellar pocket domain where fluid discharge takes place-the adhesion plaque-during the CVC pulsation cycle. Using TcrPDEC2 and TcVps34 overexpressing mutants, known to have low and high efficiency for osmotic responses, we described a structural phenotype for the CVC that matches their corresponding physiological responses. Quantitative tomography provided data on the volume of the CVC and spongiome connections. Changes in the adhesion plaque during the pulsation cycle were also quantified and a dense filamentous network was observed. Together, the results suggest that the adhesion plaque mediates fluid discharge from the central vacuole, revealing new aspects of the osmoregulatory system in <i>T. cruzi</i>.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life Science AlliancePub Date : 2024-07-26Print Date: 2024-10-01DOI: 10.26508/lsa.202402736
Johannes Cm Schlachetzki, Sara Gianella, Zhengyu Ouyang, Addison J Lana, Xiaoxu Yang, Sydney O'Brien, Jean F Challacombe, Peter J Gaskill, Kelly L Jordan-Sciutto, Antoine Chaillon, David Moore, Cristian L Achim, Ronald J Ellis, Davey M Smith, Christopher K Glass
{"title":"Gene expression and chromatin conformation of microglia in virally suppressed people with HIV.","authors":"Johannes Cm Schlachetzki, Sara Gianella, Zhengyu Ouyang, Addison J Lana, Xiaoxu Yang, Sydney O'Brien, Jean F Challacombe, Peter J Gaskill, Kelly L Jordan-Sciutto, Antoine Chaillon, David Moore, Cristian L Achim, Ronald J Ellis, Davey M Smith, Christopher K Glass","doi":"10.26508/lsa.202402736","DOIUrl":"10.26508/lsa.202402736","url":null,"abstract":"<p><p>The presence of HIV in sequestered reservoirs is a central impediment to a functional cure, allowing HIV to persist despite life-long antiretroviral therapy (ART), and driving a variety of comorbid conditions. Our understanding of the latent HIV reservoir in the central nervous system is incomplete, because of difficulties in accessing human central nervous system tissues. Microglia contribute to HIV reservoirs, but the molecular phenotype of HIV-infected microglia is poorly understood. We leveraged the unique \"Last Gift\" rapid autopsy program, in which people with HIV are closely followed until days or even hours before death. Microglial populations were heterogeneous regarding their gene expression profiles but showed similar chromatin accessibility landscapes. Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the host's genome (∼0.005%). Microglia with detectable HIV RNA showed an inflammatory phenotype. These results demonstrate a distinct myeloid cell reservoir in the brains of people with HIV despite suppressive ART. Strategies for curing HIV and neurocognitive impairment will need to consider the myeloid compartment to be successful.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282357/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life Science AlliancePub Date : 2024-07-25Print Date: 2024-09-01DOI: 10.26508/lsa.202402571
Robert M Bragg, Ella W Mathews, Andrea Grindeland, Jeffrey P Cantle, David Howland, Tom Vogt, Jeffrey B Carroll
{"title":"Global huntingtin knockout in adult mice leads to fatal neurodegeneration that spares the pancreas.","authors":"Robert M Bragg, Ella W Mathews, Andrea Grindeland, Jeffrey P Cantle, David Howland, Tom Vogt, Jeffrey B Carroll","doi":"10.26508/lsa.202402571","DOIUrl":"10.26508/lsa.202402571","url":null,"abstract":"<p><p>Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG tract in the huntingtin (HTT) gene, leading to toxic gains of function. HTT-lowering treatments are in clinical trials, but the risks imposed are unclear. Recent studies have reported on the consequences of widespread HTT loss in mice, where one group described early HTT loss leading to fatal pancreatitis, but later loss as benign. Another group reported no pancreatitis but found widespread neurological phenotypes including subcortical calcification. To better understand the liabilities of widespread HTT loss, we knocked out <i>Htt</i> with two separate tamoxifen-inducible Cre lines. We find that loss of HTT at 2 mo of age leads to progressive tremors and severe subcortical calcification at examination at 14 mo of age but does not result in acute pancreatitis or histological changes in the pancreas. We, in addition, report that HTT loss is followed by sustained induction of circulating neurofilament light chain. These results confirm that global loss of HTT in mice is associated with pronounced risks, including progressive subcortical calcification and neurodegeneration.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 9","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life Science AlliancePub Date : 2024-07-23Print Date: 2024-10-01DOI: 10.26508/lsa.202402868
Heidi M Blank, Staci E Hammer, Laurel Boatright, Courtney Roberts, Katarina E Heyden, Aravindh Nagarajan, Mitsuhiro Tsuchiya, Marcel Brun, Charles D Johnson, Patrick J Stover, Raquel Sitcheran, Brian K Kennedy, L Garry Adams, Matt Kaeberlein, Martha S Field, David W Threadgill, Helene L Andrews-Polymenis, Michael Polymenis
{"title":"Late-life dietary folate restriction reduces biosynthesis without compromising healthspan in mice.","authors":"Heidi M Blank, Staci E Hammer, Laurel Boatright, Courtney Roberts, Katarina E Heyden, Aravindh Nagarajan, Mitsuhiro Tsuchiya, Marcel Brun, Charles D Johnson, Patrick J Stover, Raquel Sitcheran, Brian K Kennedy, L Garry Adams, Matt Kaeberlein, Martha S Field, David W Threadgill, Helene L Andrews-Polymenis, Michael Polymenis","doi":"10.26508/lsa.202402868","DOIUrl":"10.26508/lsa.202402868","url":null,"abstract":"<p><p>Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Life Science AlliancePub Date : 2024-07-19Print Date: 2024-10-01DOI: 10.26508/lsa.202402586
Yevheniia Porozhan, Mikkel Carstensen, Sandrine Thouroude, Mickael Costallat, Christophe Rachez, Eric Batsché, Thor Petersen, Tove Christensen, Christian Muchardt
{"title":"Defective Integrator activity shapes the transcriptome of patients with multiple sclerosis.","authors":"Yevheniia Porozhan, Mikkel Carstensen, Sandrine Thouroude, Mickael Costallat, Christophe Rachez, Eric Batsché, Thor Petersen, Tove Christensen, Christian Muchardt","doi":"10.26508/lsa.202402586","DOIUrl":"10.26508/lsa.202402586","url":null,"abstract":"<p><p>HP1α/CBX5 is an epigenetic regulator with a suspected role in multiple sclerosis (MS). Here, using high-depth RNA sequencing on monocytes, we identified a subset of MS patients with reduced CBX5 expression, correlating with progressive stages of the disease and extensive transcriptomic alterations. Examination of rare non-coding RNA species in these patients revealed impaired maturation/degradation of U snRNAs and enhancer RNAs, indicative of reduced activity of the Integrator, a complex with suspected links to increased MS risk. At protein-coding genes, compromised Integrator activity manifested in reduced pre-mRNA splicing efficiency and altered expression of genes regulated by RNA polymerase II pause-release. Inactivation of Cbx5 in the mouse mirrored most of these transcriptional defects and resulted in hypersensitivity to experimental autoimmune encephalomyelitis. Collectively, our observations suggested a major contribution of the Integrator complex in safeguarding against transcriptional anomalies characteristic of MS, with HP1α/CBX5 emerging as an unexpected regulator of this complex's activity. These findings bring novel insights into the transcriptional aspects of MS and provide potential new criteria for patient stratification.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}