Differential roles of lysosomal cholesterol transporters in the development of C. elegans NMJs.

IF 3.3 2区 生物学 Q1 BIOLOGY
Life Science Alliance Pub Date : 2024-07-31 Print Date: 2024-10-01 DOI:10.26508/lsa.202402584
Amin Guo, Qi Wu, Xin Yan, Kanghua Chen, Yuxiang Liu, Dingfa Liang, Yuxiao Yang, Qunfeng Luo, Mingtao Xiong, Yong Yu, Erkang Fei, Fei Chen
{"title":"Differential roles of lysosomal cholesterol transporters in the development of <i>C. elegans</i> NMJs.","authors":"Amin Guo, Qi Wu, Xin Yan, Kanghua Chen, Yuxiang Liu, Dingfa Liang, Yuxiao Yang, Qunfeng Luo, Mingtao Xiong, Yong Yu, Erkang Fei, Fei Chen","doi":"10.26508/lsa.202402584","DOIUrl":null,"url":null,"abstract":"<p><p>Cholesterol homeostasis in neurons is critical for synapse formation and maintenance. Neurons with impaired cholesterol uptake undergo progressive synapse loss and eventual degeneration. To investigate the molecular mechanisms of neuronal cholesterol homeostasis and its role during synapse development, we studied motor neurons of <i>Caenorhabditis elegans</i> because these neurons rely on dietary cholesterol. Combining lipidomic analysis, we discovered that NCR-1, a lysosomal cholesterol transporter, promotes cholesterol absorption and synapse development. Loss of <i>ncr-1</i> causes smaller synapses, and low cholesterol exacerbates the deficits. Moreover, NCR-1 deficiency hinders the increase in synapses under high cholesterol. Unexpectedly, NCR-2, the NCR-1 homolog, increases the use of cholesterol and sphingomyelins and impedes synapse formation. NCR-2 deficiency causes an increase in synapses regardless of cholesterol concentration. Inhibiting the degradation or synthesis of sphingomyelins can induce or suppress the synaptic phenotypes in <i>ncr-2</i> mutants. Our findings indicate that neuronal cholesterol homeostasis is differentially controlled by two lysosomal cholesterol transporters and highlight the importance of neuronal cholesterol homeostasis in synapse development.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 10","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291935/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402584","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cholesterol homeostasis in neurons is critical for synapse formation and maintenance. Neurons with impaired cholesterol uptake undergo progressive synapse loss and eventual degeneration. To investigate the molecular mechanisms of neuronal cholesterol homeostasis and its role during synapse development, we studied motor neurons of Caenorhabditis elegans because these neurons rely on dietary cholesterol. Combining lipidomic analysis, we discovered that NCR-1, a lysosomal cholesterol transporter, promotes cholesterol absorption and synapse development. Loss of ncr-1 causes smaller synapses, and low cholesterol exacerbates the deficits. Moreover, NCR-1 deficiency hinders the increase in synapses under high cholesterol. Unexpectedly, NCR-2, the NCR-1 homolog, increases the use of cholesterol and sphingomyelins and impedes synapse formation. NCR-2 deficiency causes an increase in synapses regardless of cholesterol concentration. Inhibiting the degradation or synthesis of sphingomyelins can induce or suppress the synaptic phenotypes in ncr-2 mutants. Our findings indicate that neuronal cholesterol homeostasis is differentially controlled by two lysosomal cholesterol transporters and highlight the importance of neuronal cholesterol homeostasis in synapse development.

溶酶体胆固醇转运体在秀丽隐杆线虫 NMJ 发育过程中的不同作用
神经元中的胆固醇平衡对突触的形成和维持至关重要。胆固醇吸收受损的神经元会逐渐丧失突触并最终退化。为了研究神经元胆固醇平衡的分子机制及其在突触发育过程中的作用,我们研究了秀丽隐杆线虫的运动神经元,因为这些神经元依赖膳食中的胆固醇。结合脂质体分析,我们发现溶酶体胆固醇转运体 NCR-1 促进了胆固醇的吸收和突触的发育。ncr-1的缺失会导致突触变小,而低胆固醇会加剧突触的缺失。此外,在高胆固醇条件下,NCR-1的缺乏会阻碍突触的增加。意想不到的是,NCR-1的同源物NCR-2会增加胆固醇和鞘磷脂的使用,阻碍突触的形成。无论胆固醇浓度如何,缺乏 NCR-2 都会导致突触增加。抑制鞘磷脂的降解或合成可诱导或抑制 ncr-2 突变体的突触表型。我们的研究结果表明,神经元胆固醇平衡受两个溶酶体胆固醇转运体的不同控制,并强调了神经元胆固醇平衡在突触发育中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信