Global Ecology and Biogeography最新文献

筛选
英文 中文
Global-Scale Analysis Reveals Importance of Environment and Species Traits in Spatial Patterns of Riparian Plants' Genetic Diversity
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-02-14 DOI: 10.1111/geb.70010
Bartłomiej Surmacz, Patricia María Rodríguez González, Roland Jansson, Tomasz Suchan, Remigiusz Pielech
{"title":"Global-Scale Analysis Reveals Importance of Environment and Species Traits in Spatial Patterns of Riparian Plants' Genetic Diversity","authors":"Bartłomiej Surmacz, Patricia María Rodríguez González, Roland Jansson, Tomasz Suchan, Remigiusz Pielech","doi":"10.1111/geb.70010","DOIUrl":"10.1111/geb.70010","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>In riparian zones along rivers, plant demography is shaped by hydrologic disturbances, the dendritic structure of the river networks, and asymmetric gene flow due to the prevalence of unidirectional dispersal by hydrochory. Downstream-biased dispersal may lead to the accumulation of genetic diversity in populations situated lower within the catchment area—a phenomenon referred to as ‘downstream increase in intraspecific genetic diversity’ (DIGD). Our study aimed to test if the presence of this pattern in riparian plants depends on the species traits, sampling design and ecosystem integrity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Riparian zones along rivers worldwide.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>1978–2023.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Vascular plants.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We conducted meta-analysis of population genetic studies on riparian plants to identify the factors linked to the occurrence of the DIGD pattern. We modelled the correlation between position along rivers and population genetic diversity using a dataset consisting of variables extracted from the studies, supplemented by data from plant trait databases.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found no evidence for a general trend in plant genetic diversity along rivers, but species traits and environmental factors partially explained the patterns. A downstream increase in genetic diversity was more likely to be found in species capable of hydrochoric dispersal and along the unmodified rivers which maintain habitat continuity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our study highlights that different patterns of genetic diversity can be linked to species traits or different levels of habitat fragmentation. Population genetic studies of riparian plants have frequently investigated patterns of genetic diversity in remnant populations in degraded riparian habitats. Although such investigations are important, more population studies of common plants in well-preserved riparian zones are needed, as these can help understanding the general mechanisms that control natural population dynamics of plant species.</p>\u0000 </section>\u0000 </d","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishing Historical Baselines of Arthropod Assemblages Using Rodent Paleomiddens
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-02-14 DOI: 10.1111/geb.70006
Joseph Braasch, Julio Betancourt, Olivier Dézerald, Udari Peiris, Maura Tapia-Rozas, Cristian Villagra, Claudio Latorre, Angélica L. González
{"title":"Establishing Historical Baselines of Arthropod Assemblages Using Rodent Paleomiddens","authors":"Joseph Braasch, Julio Betancourt, Olivier Dézerald, Udari Peiris, Maura Tapia-Rozas, Cristian Villagra, Claudio Latorre, Angélica L. González","doi":"10.1111/geb.70006","DOIUrl":"10.1111/geb.70006","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Arthropods are under-represented in paleoecological studies but are critical agents in ecological processes. Despite rigorous documentation of diverse arthropod assemblages from ancient rodent (or paleo) middens worldwide, their use for studying ancient arthropod diversity has stalled in recent decades. Here, we review published studies to identify how paleomidden arthropods can be leveraged to address significant questions in ecology and synthesise spatiotemporal trends in ancient arthropod diversity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global with a focus on the Americas.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>From ~40,000 to 100 years before present.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Fossil arthropods preserved in rodent paleomiddens.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We identified four primary objectives in ecology that can be advanced using paleomidden arthropod fossils: the reconstruction of ancient biodiversity, the elucidation of mechanisms and processes driving arthropod range shifts, the incorporation of arthropods into ancient trophic webs, and the assessment of adaptive responses to changing environments.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We identified 20 papers reporting arthropod remains, of which 14 provided data suitable for quantitative analyses. Although no significant differences in arthropod community diversity were found across broad geographic regions, substantial differences in community structure were observed. In North America, we also detected a decline in arthropod diversity from 10 to 5 ka BP, driven primarily by the absence of high-diversity assemblages during this period.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Paleomidden arthropods remain an underutilised ecological resource that can be leveraged to improve the inferential scope of arthropod research across spatiotemporal gradients. Collaboration between paleo- and neoecologists could help expand the sampling of ancient and modern arthropod communities, particularly those associated with paleomiddens, to create high-resolution datasets spanning important periods in biogeographical history. Paleomidden arthropods will remain a fundamental component for ","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regional Occupancy Is Negatively Related to Richness Across Time and Space
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-02-12 DOI: 10.1111/geb.70009
B. R. Shipley, E. E. Saupe
{"title":"Regional Occupancy Is Negatively Related to Richness Across Time and Space","authors":"B. R. Shipley, E. E. Saupe","doi":"10.1111/geb.70009","DOIUrl":"https://doi.org/10.1111/geb.70009","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Biological diversity is shaped by processes occurring at different spatial and temporal scales. However, the direct influence of the spatial and temporal scale on patterns of occupancy is still understudied. Today, occupancy is often negatively correlated with species richness, but it is unknown whether this relationship is scale dependent and consistent through time. Here, we use datasets of contemporary and paleontological communities to explore the occupancy-richness relationship across space and time, examining how scale influences this relationship.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Varying spatial extents with global coverage.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time</h3>\u0000 \u0000 <p>Varies from 7 mya to 2021 CE.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Taxa</h3>\u0000 \u0000 <p>foraminifera, mammals, birds, fish, and plants.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We gathered datasets spanning different spatial, temporal, and taxonomic extents. We binned each dataset into distinct time periods and spatially subsampled them into regional pools of varying sizes. We calculated regional occupancy and richness for each pool, measuring the strength of the relationship between the two. Using linear mixed models, we related the occupancy-richness relationship to the size of the regional pools, overall species richness, and climatic changes through time.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We observed nearly ubiquitous negative occupancy-richness relationships across taxa, spatial scale, and time. The size of the regional pools and time bins had no consistent effects on the strength of the relationship, but the strength of the negative relationship varied substantially among taxa, with foraminifera and North American pollen showing weaker relationships than mammals and birds. Changes in this relationship through time were not driven by climatic perturbations but by the species richness observed across all regional pools.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Patterns of regional richness and occupancy are consistently negatively related and independent of spatial and temporal scale and of direct climatic changes. However, differences in the ecology of species (e.g., dispersal ability) and changes in biodiversity and","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to EGCop: An Expert-Curated Occurrence Dataset of European Groundwater-Dwelling Copepods (Crustacea: Copepoda)
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-02-07 DOI: 10.1111/geb.70008
{"title":"Correction to EGCop: An Expert-Curated Occurrence Dataset of European Groundwater-Dwelling Copepods (Crustacea: Copepoda)","authors":"","doi":"10.1111/geb.70008","DOIUrl":"https://doi.org/10.1111/geb.70008","url":null,"abstract":"<p>Cerasoli, F., B. Fiasca, M. Di Cicco, et al. 2025. “EGCop: An Expert-Curated Occurrence Dataset of European Groundwater-Dwelling Copepods (Crustacea: Copepoda).” <i>Global Ecology and Biogeography</i> 34: e13953. https://doi.org/10.1111/geb.13953.</p><p>In the originally-published article, the Data Availability Statement is incorrect. It should read, “The presented dataset and the related metadata are accessible within the Zenodo repository at the following link 10.5281/zenodo.14608862.”</p><p>We apologise for this error.</p>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Continental Shifts of Ecological Strategy in a Global Plant Invader
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-02-06 DOI: 10.1111/geb.70001
Ramona E. Irimia, Weihan Zhao, Peipei Cao, Madalin Parepa, Zhi-Yong Liao, Shengyu Wang, Jeannie M. Mounger, Conner Richardson, Fatima Elkott, Xin Zhuang, Jingwen Bi, Jieren Jin, Yujie Zhao, Elodie Kugler, Julia Rafalski, Eva Schloter, Jihua Wu, Rui-Ting Ju, Ji Yang, Zuzana Chumová, Pavel Trávníček, Bo Li, Oliver Bossdorf, Christina L. Richards
{"title":"Cross-Continental Shifts of Ecological Strategy in a Global Plant Invader","authors":"Ramona E. Irimia,&nbsp;Weihan Zhao,&nbsp;Peipei Cao,&nbsp;Madalin Parepa,&nbsp;Zhi-Yong Liao,&nbsp;Shengyu Wang,&nbsp;Jeannie M. Mounger,&nbsp;Conner Richardson,&nbsp;Fatima Elkott,&nbsp;Xin Zhuang,&nbsp;Jingwen Bi,&nbsp;Jieren Jin,&nbsp;Yujie Zhao,&nbsp;Elodie Kugler,&nbsp;Julia Rafalski,&nbsp;Eva Schloter,&nbsp;Jihua Wu,&nbsp;Rui-Ting Ju,&nbsp;Ji Yang,&nbsp;Zuzana Chumová,&nbsp;Pavel Trávníček,&nbsp;Bo Li,&nbsp;Oliver Bossdorf,&nbsp;Christina L. Richards","doi":"10.1111/geb.70001","DOIUrl":"10.1111/geb.70001","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Plant invasions are a global problem that requires studying plants and their environmental associations across native and introduced ranges.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>2000 km transects in China, Europe and North America.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>June 2019–July 2020.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Japanese knotweed (<i>Reynoutria japonica</i>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We surveyed 150 populations of Japanese knotweed, a noxious invader of the temperate zone, along 2000 km transects in native China and the introduced ranges of Europe and North America.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found that larger plants and denser populations in the introduced ranges were associated with shifts in leaf economy and chemical defences. Introduced knotweed populations had higher SLA but reduced leaf chlorophyll, lignin, C:N ratio and leaf toughness along with altered leaf tannins, flavonoids and alkaloids. We found three distinct multivariate knotweed phenotypes primarily in the introduced ranges, and two multivariate knotweed phenotypes mainly in native populations.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Decreased herbivore and pathogen impacts in introduced populations and changes in environmental associations indicate that enemy release and novel habitat conditions might have driven the emergence of novel ecological strategies in this global plant invader.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143258652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EuPPollNet: A European Database of Plant-Pollinator Networks
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-02-03 DOI: 10.1111/geb.70000
Jose B. Lanuza, Tiffany M. Knight, Nerea Montes-Perez, Will Glenny, Paola Acuña, Matthias Albrecht, Maddi Artamendi, Isabelle Badenhausser, Joanne M. Bennett, Paolo Biella, Ricardo Bommarco, Andree Cappellari, Sílvia Castro, Yann Clough, Pau Colom, Joana Costa, Nathan Cyrille, Natasha de Manincor, Paula Dominguez-Lapido, Christophe Dominik, Yoko L. Dupont, Reinart Feldmann, Emeline Felten, Victoria Ferrero, William Fiordaliso, Alessandro Fisogni, Úna Fitzpatrick, Marta Galloni, Hugo Gaspar, Elena Gazzea, Irina Goia, Carmelo Gómez-Martínez, Miguel A. González-Estévez, Juan Pedro González-Varo, Ingo Grass, Jiří Hadrava, Nina Hautekèete, Veronica Hederström, Ruben Heleno, Sandra Hervias-Parejo, Jonna M. Heuschele, Bernhard Hoiss, Andrea Holzschuh, Sebastian Hopfenmüller, José M. Iriondo, Birgit Jauker, Frank Jauker, Jana Jersáková, Katharina Kallnik, Reet Karise, David Kleijn, Stefan Klotz, Theresia Krausl, Elisabeth Kühn, Carlos Lara-Romero, Michelle Larkin, Emilien Laurent, Amparo Lázaro, Felipe Librán-Embid, Yicong Liu, Sara Lopes, Francisco López-Núñez, João Loureiro, Ainhoa Magrach, Marika Mänd, Lorenzo Marini, Rafel Beltran Mas, François Massol, Corina Maurer, Denis Michez, Francisco P. Molina, Javier Morente-López, Sarah Mullen, Georgios Nakas, Lena Neuenkamp, Arkadiusz Nowak, Catherine J. O'Connor, Aoife O'Rourke, Erik Öckinger, Jens M. Olesen, Øystein H. Opedal, Theodora Petanidou, Yves Piquot, Simon G. Potts, Eileen F. Power, Willem Proesmans, Demetra Rakosy, Sara Reverté, Stuart P. M. Roberts, Maj Rundlöf, Laura Russo, Bertrand Schatz, Jeroen Scheper, Oliver Schweiger, Pau Enric Serra, Catarina Siopa, Henrik G. Smith, Dara Stanley, Valentin Ştefan, Ingolf Steffan-Dewenter, Jane C. Stout, Louis Sutter, Elena Motivans Švara, Sebastian Świerszcz, Amibeth Thompson, Anna Traveset, Annette Trefflich, Robert Tropek, Teja Tscharntke, Adam J. Vanbergen, Montserrat Vilà, Ante Vujić, Cian White, Jennifer B. Wickens, Victoria B. Wickens, Marie Winsa, Leana Zoller, Ignasi Bartomeus
{"title":"EuPPollNet: A European Database of Plant-Pollinator Networks","authors":"Jose B. Lanuza,&nbsp;Tiffany M. Knight,&nbsp;Nerea Montes-Perez,&nbsp;Will Glenny,&nbsp;Paola Acuña,&nbsp;Matthias Albrecht,&nbsp;Maddi Artamendi,&nbsp;Isabelle Badenhausser,&nbsp;Joanne M. Bennett,&nbsp;Paolo Biella,&nbsp;Ricardo Bommarco,&nbsp;Andree Cappellari,&nbsp;Sílvia Castro,&nbsp;Yann Clough,&nbsp;Pau Colom,&nbsp;Joana Costa,&nbsp;Nathan Cyrille,&nbsp;Natasha de Manincor,&nbsp;Paula Dominguez-Lapido,&nbsp;Christophe Dominik,&nbsp;Yoko L. Dupont,&nbsp;Reinart Feldmann,&nbsp;Emeline Felten,&nbsp;Victoria Ferrero,&nbsp;William Fiordaliso,&nbsp;Alessandro Fisogni,&nbsp;Úna Fitzpatrick,&nbsp;Marta Galloni,&nbsp;Hugo Gaspar,&nbsp;Elena Gazzea,&nbsp;Irina Goia,&nbsp;Carmelo Gómez-Martínez,&nbsp;Miguel A. González-Estévez,&nbsp;Juan Pedro González-Varo,&nbsp;Ingo Grass,&nbsp;Jiří Hadrava,&nbsp;Nina Hautekèete,&nbsp;Veronica Hederström,&nbsp;Ruben Heleno,&nbsp;Sandra Hervias-Parejo,&nbsp;Jonna M. Heuschele,&nbsp;Bernhard Hoiss,&nbsp;Andrea Holzschuh,&nbsp;Sebastian Hopfenmüller,&nbsp;José M. Iriondo,&nbsp;Birgit Jauker,&nbsp;Frank Jauker,&nbsp;Jana Jersáková,&nbsp;Katharina Kallnik,&nbsp;Reet Karise,&nbsp;David Kleijn,&nbsp;Stefan Klotz,&nbsp;Theresia Krausl,&nbsp;Elisabeth Kühn,&nbsp;Carlos Lara-Romero,&nbsp;Michelle Larkin,&nbsp;Emilien Laurent,&nbsp;Amparo Lázaro,&nbsp;Felipe Librán-Embid,&nbsp;Yicong Liu,&nbsp;Sara Lopes,&nbsp;Francisco López-Núñez,&nbsp;João Loureiro,&nbsp;Ainhoa Magrach,&nbsp;Marika Mänd,&nbsp;Lorenzo Marini,&nbsp;Rafel Beltran Mas,&nbsp;François Massol,&nbsp;Corina Maurer,&nbsp;Denis Michez,&nbsp;Francisco P. Molina,&nbsp;Javier Morente-López,&nbsp;Sarah Mullen,&nbsp;Georgios Nakas,&nbsp;Lena Neuenkamp,&nbsp;Arkadiusz Nowak,&nbsp;Catherine J. O'Connor,&nbsp;Aoife O'Rourke,&nbsp;Erik Öckinger,&nbsp;Jens M. Olesen,&nbsp;Øystein H. Opedal,&nbsp;Theodora Petanidou,&nbsp;Yves Piquot,&nbsp;Simon G. Potts,&nbsp;Eileen F. Power,&nbsp;Willem Proesmans,&nbsp;Demetra Rakosy,&nbsp;Sara Reverté,&nbsp;Stuart P. M. Roberts,&nbsp;Maj Rundlöf,&nbsp;Laura Russo,&nbsp;Bertrand Schatz,&nbsp;Jeroen Scheper,&nbsp;Oliver Schweiger,&nbsp;Pau Enric Serra,&nbsp;Catarina Siopa,&nbsp;Henrik G. Smith,&nbsp;Dara Stanley,&nbsp;Valentin Ştefan,&nbsp;Ingolf Steffan-Dewenter,&nbsp;Jane C. Stout,&nbsp;Louis Sutter,&nbsp;Elena Motivans Švara,&nbsp;Sebastian Świerszcz,&nbsp;Amibeth Thompson,&nbsp;Anna Traveset,&nbsp;Annette Trefflich,&nbsp;Robert Tropek,&nbsp;Teja Tscharntke,&nbsp;Adam J. Vanbergen,&nbsp;Montserrat Vilà,&nbsp;Ante Vujić,&nbsp;Cian White,&nbsp;Jennifer B. Wickens,&nbsp;Victoria B. Wickens,&nbsp;Marie Winsa,&nbsp;Leana Zoller,&nbsp;Ignasi Bartomeus","doi":"10.1111/geb.70000","DOIUrl":"10.1111/geb.70000","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Motivation&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Pollinators play a crucial role in maintaining Earth's terrestrial biodiversity. However, rapid human-induced environmental changes are compromising the long-term persistence of plant-pollinator interactions. Unfortunately, we lack robust, generalisable data capturing how plant-pollinator communities are structured across space and time. Here, we present the EuPPollNet (European Plant-Pollinator Networks) database, a fully open European-level database containing harmonised taxonomic data on plant-pollinator interactions referenced in both space and time, along with other ecological variables of interest. In addition, we evaluate the taxonomic and sampling coverage of EuPPollNet, and summarise key structural properties in plant-pollinator networks. We believe EuPPollNet will stimulate research to address data gaps in plant-pollinator interactions and guide future efforts in conservation planning.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Types of Variables Included&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;EuPPollNet contains 1,162,109 interactions between plants and pollinators from 1864 distinct networks, which belong to 52 different studies distributed across 23 European countries. Information about sampling methodology, habitat type, biogeographic region and additional taxonomic rank information (i.e. order, family, genus and species) is also provided.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Spatial Location and Grain&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The database contains 1214 different sampling locations from 13 different natural and anthropogenic habitats that fall in 7 different biogeographic regions. All records are geo-referenced and presented in the World Geodetic System 1984 (WGS84).&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period and Grain&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Species interaction data was collected between 2004 and 2021.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa and Level of Measurement&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The database contains interaction data at the species level for 94% of the records, including a total of 1411 plant and 2223 pollinator species. The database includes data on 6% of the European species of flowering plants, 34% of bees, 26% of butterflies and 33% of syrphid species at the European level.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Software Format&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The database was built with R and is stored in ‘.rds’ and ‘.csv’ formats. Its construction is fully reproducible and can be accessed at: https://doi","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Completing the Speciation Cycle: Ecological Niches and Traits Predict Local Species Coexistence in Birds Across the Globe
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-01-30 DOI: 10.1111/geb.70002
Vladimír Remeš, Lenka Harmáčková
{"title":"Completing the Speciation Cycle: Ecological Niches and Traits Predict Local Species Coexistence in Birds Across the Globe","authors":"Vladimír Remeš,&nbsp;Lenka Harmáčková","doi":"10.1111/geb.70002","DOIUrl":"10.1111/geb.70002","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aim&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The build-up of local species diversity requires completing the transition from allopatry to sympatry to local coexistence (syntopy). However, understanding processes than enable species arising in allopatry to become syntopic remains an unsolved challenge. Potential explanations include niche conservatism, niche divergence, and energy availability. To gauge their importance, we modelled the effects of species split age, the divergence in beta and alpha niches, specialisation, and resource availability to reveal factors driving the evolution of local species coexistence upon speciation.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Location&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Global.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Time Period&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Miocene to the present.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Major Taxa Studied&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Passerine birds.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We collated a dataset of 206 passerine sister species pairs, each with their age of divergence; range sympatry; degree of syntopy (derived from 7,257,312 complete eBird checklists falling within the area of range overlap); beta niche divergence (habitats and environmental characteristics); alpha niche divergence (morphology, diet, and foraging stratum); species ecological specialisation (diet and foraging stratum); resource availability; and body mass. We used phylogeny-informed models to infer which of these factors best explained local species coexistence upon speciation.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;There was a major effect of niche conservatism as species with more similar beta niches (canopy height, vegetation greenness, moisture availability, and habitat affinities) exhibited higher degree of syntopy. Small species with similarly sized beaks and high specialisation on diet were also more likely to coexist locally. In contrast, the divergence or overlap in alpha niches (diet and foraging stratum) did not predict the degree of syntopy. Confirming previous studies, the degree of syntopy strongly increased with increasing range sympatry, while only weakly in older species pairs.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The evolution of secondary syntopy is driven by niche conservatism, ecological specialisation, and body mass-related energy requirements. Co","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CoralBleachRisk—Global Projections of Coral Bleaching Risk in the 21st Century
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-01-30 DOI: 10.1111/geb.13955
Camille Mellin, Stuart Brown, Scott F. Heron, Damien A. Fordham
{"title":"CoralBleachRisk—Global Projections of Coral Bleaching Risk in the 21st Century","authors":"Camille Mellin,&nbsp;Stuart Brown,&nbsp;Scott F. Heron,&nbsp;Damien A. Fordham","doi":"10.1111/geb.13955","DOIUrl":"10.1111/geb.13955","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Motivation</h3>\u0000 \u0000 <p>Timing, duration and severity of marine heatwaves are changing rapidly in response to anthropogenic climate change, thereby increasing the frequency of coral bleaching events. Mass coral bleaching events result from cumulative heat stress, which is commonly quantified through degree heating weeks (DHW). Here we introduce <i>CoralBleachRisk</i>, a daily-resolution global dataset that characterises sea surface temperatures, heat stress anomalies and the timing, duration and magnitude of severe coral bleaching conditions from the recent past (1985) to the future (2100) under three contrasting Shared Socioeconomic Pathways. Our projections are downscaled to a 0.5° resolution (<i>~</i>50 km), bias-corrected and validated using remotely sensed data of sea surface temperatures and a global dataset of historical coral bleaching events. An accompanying online software tool allows non-specialist users to access aggregated metrics of coral bleaching risk and generate time series projections of coral vulnerability for Earth's coral reefs. Our dataset enables regional to global comparisons of future trends in severe coral bleaching risk.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Types of Variables Contained</h3>\u0000 \u0000 <p>Sea surface temperature (SST), SST anomaly, DHW, annual timing and duration of Bleaching Alerts.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Spatial Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>1985–2100.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa and Level of Measurement</h3>\u0000 \u0000 <p>Coral communities.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Software Format</h3>\u0000 \u0000 <p>Netcdf (.nc).</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 2","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13955","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SNAPSHOT USA 2019–2023: The First Five Years of Data From a Coordinated Camera Trap Survey of the United States
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-01-27 DOI: 10.1111/geb.13941
Brigit Rooney, Roland Kays, Michael V. Cove, Alex Jensen, Benjamin R. Goldstein, Christopher Pate, Paula Castiblanco, Maggie E. Abell, Jessie Adley, Briana Agenbroad, Adam A. Ahlers, Peter D. Alexander, David Allen, Maximilian L. Allen, Jesse M. Alston, Mohammad Alyetama, Thomas L. Anderson, Raul Andrade, Christine Anhalt-Depies, Cara L. Appel, Leslie Armendariz, Christopher R. Ayers, Amy B. Baird, Cara Bak, Griffin Bandler, Erin E. Barding, Evan G. Barr, Carolina Baruzzi, Kelli Bashaw, Silas C. Beers, Jerrold L. Belant, Emma Bell, John F. Benson, Anna Berg, Dylan L. Bergman, Brandon M. Bernhardt, Meagan A. Bethel, Tori Bird, Amanda B. Bishop, Daniel A. Bogan, LaRoy Brandt, Levin C. Brandt, Aidan B. Branney, Chloe Bratton, Claire E. Bresnan, Jarred M. Brooke, Erin K. Buchholtz, Frances Buderman, Alexandra D. Burnett, Emily E. Burns, Domnique A. Byrd, Susan A. Cannella, Kathleen A. Carey, William A. Carlile, Kellie L. Carter, Brenna J. Cassidy, Ivan Castro-Arellano, Sara Cendejas-Zarelli, Nilanjan Chatterjee, Amanda E. Cheeseman, Cary Chevalier, M. Colter Chitwood, Petros Chrysafis, Bret Aaron Collier, D. Parks Collins, Justin A. Compton, Rhea Cone, L. Mike Conner, Brianna L. Cook, Olivia G. Cosby, Stephanie S. Coster, Anthony P. Crupi, Andrea K. Darracq, Jon M. Davenport, Devin Davis, Drew R. Davis, Miranda L. Davis, Rebecca J. Davis, Brett A. DeGregorio, Anant Deshwal, Kyle D. Dougherty, Art Drauglis, Caleb J. Durbin, Andrew J. Edelman, Valerie Elder, Blakely Eller, E. Hance Ellington, Susan N. Ellis-Felege, Caroline N. Ellison, Jean E. Fantle-Lepczyk, Jonathan J. Farr, Zach J. Farris, Shannon P. Finnegan, M. Caitlin Fisher-Reid, Elizabeth A. Flaherty, Gabriela Franzoi Dri, Sarah Fritts, Jeremy Fuller, Travis Gallo, Laken S. Ganoe, Carissa N. Ganong, Ricky Garibay, Brian D. Gerber, Francis D. Gerraty, Sean T. Giery, Selena M. Gilyot, Jessica L. Glasscock, Ben Goldfarb, Louis E. Good, Gracie Granados, Austin M. Green, Jasmine K. Grewal, Andrew Grusenmeyer, Joseph M. Guthrie, Matthew T. Hallett, Chris Hansen, Lonnie P. Hansen, Clae Hanson, Eamon J. Harrity, Steven C. M. Hasstedt, Mark Hebblewhite, Daniel J. Herrera, Angela Holland, Brigit R. Humphreys, Heide D. Island, Alexander R. Jack, Emily P. Johansson, Alex M. Johnson, Luanne Johnson, Tamara L. Johnstone-Yellin, Maria Luisa S. P. Jorge, Willaine Kahano, Michael A. Kinsey, Brier E. Klossing, Travis W. Knowles, Molly M. Koeck, John L. Koprowski, Kellie M. Kuhn, Erin K. Kuprewicz, Diana J. R. Lafferty, Jessica A. Lamberton-Moreno, Travis J. Land, Avy M. Langston, Scott LaPoint, Erin N. Largent, Marcus A. Lashley, Richard G. Lathrop, Thomas E. Lee Jr, Christopher A. Lepczyk, Damon B. Lesmeister, Carissa Leung, Jason V. Lombardi, Robert Long, Robert C. Lonsinger, Isaac Lord, Steven S. Madere, Sean P. Maher, Jenifer A. Mallinoff, Andres Martinez, David S. Mason, Heather A. Mathewson, Amy E. Mayer, Kyle P. McCarthy, Shawn F. McCracken, Brandon McDonald, Brendan McGarry, Sierra T. McMurry, Leah E. McTigue, Brianna Marie Mena, Margaret Mercer, Margaret R. Merz, Sophie Millar, Geoffrey D. Miller, Joshua J. Millspaugh, Remington J. Moll, Tony W. Mong, Javier D. Monzón, John C. Moore, Alessio Mortelliti, Kelton W. Mote, Kayleigh Mullen, Alexis Mychajliw, Christopher Nagy, Sean A. Neiswenter, Drew R. Neyland, Laura P. Nicholson, M. Teague O'Mara, Brian J. O'Neill, Elizabeth A. Olson, Michael J. Orgill, Gabriela Palomo-Munoz, Shawn M. Parsons, Lorelei E. Patrick, Jessica R. Patterson, David L. Pearce, Mary E. Pendergast, Bianca S. Perla, Tyler R. Petroelje, Henry Pliske, Mairi K. P. Poisson, Melissa R. Price, Mike D. Proctor, Nathan J. Proudman, Janet L. Rachlow, Ramon E. Ramos, Miguel Reabold, Joseph Redinger, Adar E. Reed, Christine C. Rega-Brodsky, Evan Rehm, Kathryn R. Remine, Michael S. Rentz, Elizabeth Ridder, Derek R. Risch, Lydia L. Robbins, Justin P. Roemer, Andrea Romero, Christopher Rota, Christopher M. Schalk, Bradley D. Scholten, Christina L. Scott, Brandon M. Scurlock, Maksim Sergeyev, William J. Severud, Jennifer Sevin, Hila Shamon, Conan Sharp, Michael Shaw, Veronica Siverls-Dunham, Austin B. Smith, Daniel S. Smith, Matthew H. Snider, Daniel A. Sossover, Adia R. Sovie, J. Alan Sparks, Jessica Speiser, Matthew T. Springer, Jared L. Spurlin, Eric A. Steinkamp, Jennifer L. Stenglein, Joanne Stewart Kloker, Cassie M. Stitzman, Michael Stokes, Khloey Stringer, Johnathon Stutzman, Daniel S. Sullins, Cassandra Sullivan, Noah B. Sullivan, Evan P. Tanner, Ashley M. Tanner, Emily B. Thornock, Jack Titus, Jacquelyn M. Tleimat, Kenny Toomey, Luke T. Toussaint, Michael Uribe, Marius Van der Merwe, Dakota J. Van Parys, John P. Vanek, Johanna Varner, Brienna V. Walker, Cody Wallace, David Ward, Bethany H. Warner, Derick T. Warren, Joanne R. Wasdin, Stephen L. Webb, Katelyn L. Wehr, Nathaniel H. Wehr, Emily G. Weigel, Ty J. Werdel, Laura S. Whipple, Christopher A. Whittier, Chloe Wiersema, Andrew Mark Wilson, Margaret F. H. Wilson, Alexander J. Wolf, Justin P. Wolford, David W. Wolfson, Daniel J. Woolsey, Matthew Alan Wuensch, Gloria Xu, Kerry L. Yurewicz, Veronica Zancho, Marketa Zimova, Adam Zorn, William J. McShea
{"title":"SNAPSHOT USA 2019–2023: The First Five Years of Data From a Coordinated Camera Trap Survey of the United States","authors":"Brigit Rooney,&nbsp;Roland Kays,&nbsp;Michael V. Cove,&nbsp;Alex Jensen,&nbsp;Benjamin R. Goldstein,&nbsp;Christopher Pate,&nbsp;Paula Castiblanco,&nbsp;Maggie E. Abell,&nbsp;Jessie Adley,&nbsp;Briana Agenbroad,&nbsp;Adam A. Ahlers,&nbsp;Peter D. Alexander,&nbsp;David Allen,&nbsp;Maximilian L. Allen,&nbsp;Jesse M. Alston,&nbsp;Mohammad Alyetama,&nbsp;Thomas L. Anderson,&nbsp;Raul Andrade,&nbsp;Christine Anhalt-Depies,&nbsp;Cara L. Appel,&nbsp;Leslie Armendariz,&nbsp;Christopher R. Ayers,&nbsp;Amy B. Baird,&nbsp;Cara Bak,&nbsp;Griffin Bandler,&nbsp;Erin E. Barding,&nbsp;Evan G. Barr,&nbsp;Carolina Baruzzi,&nbsp;Kelli Bashaw,&nbsp;Silas C. Beers,&nbsp;Jerrold L. Belant,&nbsp;Emma Bell,&nbsp;John F. Benson,&nbsp;Anna Berg,&nbsp;Dylan L. Bergman,&nbsp;Brandon M. Bernhardt,&nbsp;Meagan A. Bethel,&nbsp;Tori Bird,&nbsp;Amanda B. Bishop,&nbsp;Daniel A. Bogan,&nbsp;LaRoy Brandt,&nbsp;Levin C. Brandt,&nbsp;Aidan B. Branney,&nbsp;Chloe Bratton,&nbsp;Claire E. Bresnan,&nbsp;Jarred M. Brooke,&nbsp;Erin K. Buchholtz,&nbsp;Frances Buderman,&nbsp;Alexandra D. Burnett,&nbsp;Emily E. Burns,&nbsp;Domnique A. Byrd,&nbsp;Susan A. Cannella,&nbsp;Kathleen A. Carey,&nbsp;William A. Carlile,&nbsp;Kellie L. Carter,&nbsp;Brenna J. Cassidy,&nbsp;Ivan Castro-Arellano,&nbsp;Sara Cendejas-Zarelli,&nbsp;Nilanjan Chatterjee,&nbsp;Amanda E. Cheeseman,&nbsp;Cary Chevalier,&nbsp;M. Colter Chitwood,&nbsp;Petros Chrysafis,&nbsp;Bret Aaron Collier,&nbsp;D. Parks Collins,&nbsp;Justin A. Compton,&nbsp;Rhea Cone,&nbsp;L. Mike Conner,&nbsp;Brianna L. Cook,&nbsp;Olivia G. Cosby,&nbsp;Stephanie S. Coster,&nbsp;Anthony P. Crupi,&nbsp;Andrea K. Darracq,&nbsp;Jon M. Davenport,&nbsp;Devin Davis,&nbsp;Drew R. Davis,&nbsp;Miranda L. Davis,&nbsp;Rebecca J. Davis,&nbsp;Brett A. DeGregorio,&nbsp;Anant Deshwal,&nbsp;Kyle D. Dougherty,&nbsp;Art Drauglis,&nbsp;Caleb J. Durbin,&nbsp;Andrew J. Edelman,&nbsp;Valerie Elder,&nbsp;Blakely Eller,&nbsp;E. Hance Ellington,&nbsp;Susan N. Ellis-Felege,&nbsp;Caroline N. Ellison,&nbsp;Jean E. Fantle-Lepczyk,&nbsp;Jonathan J. Farr,&nbsp;Zach J. Farris,&nbsp;Shannon P. Finnegan,&nbsp;M. Caitlin Fisher-Reid,&nbsp;Elizabeth A. Flaherty,&nbsp;Gabriela Franzoi Dri,&nbsp;Sarah Fritts,&nbsp;Jeremy Fuller,&nbsp;Travis Gallo,&nbsp;Laken S. Ganoe,&nbsp;Carissa N. Ganong,&nbsp;Ricky Garibay,&nbsp;Brian D. Gerber,&nbsp;Francis D. Gerraty,&nbsp;Sean T. Giery,&nbsp;Selena M. Gilyot,&nbsp;Jessica L. Glasscock,&nbsp;Ben Goldfarb,&nbsp;Louis E. Good,&nbsp;Gracie Granados,&nbsp;Austin M. Green,&nbsp;Jasmine K. Grewal,&nbsp;Andrew Grusenmeyer,&nbsp;Joseph M. Guthrie,&nbsp;Matthew T. Hallett,&nbsp;Chris Hansen,&nbsp;Lonnie P. Hansen,&nbsp;Clae Hanson,&nbsp;Eamon J. Harrity,&nbsp;Steven C. M. Hasstedt,&nbsp;Mark Hebblewhite,&nbsp;Daniel J. Herrera,&nbsp;Angela Holland,&nbsp;Brigit R. Humphreys,&nbsp;Heide D. Island,&nbsp;Alexander R. Jack,&nbsp;Emily P. Johansson,&nbsp;Alex M. Johnson,&nbsp;Luanne Johnson,&nbsp;Tamara L. Johnstone-Yellin,&nbsp;Maria Luisa S. P. Jorge,&nbsp;Willaine Kahano,&nbsp;Michael A. Kinsey,&nbsp;Brier E. Klossing,&nbsp;Travis W. Knowles,&nbsp;Molly M. Koeck,&nbsp;John L. Koprowski,&nbsp;Kellie M. Kuhn,&nbsp;Erin K. Kuprewicz,&nbsp;Diana J. R. Lafferty,&nbsp;Jessica A. Lamberton-Moreno,&nbsp;Travis J. Land,&nbsp;Avy M. Langston,&nbsp;Scott LaPoint,&nbsp;Erin N. Largent,&nbsp;Marcus A. Lashley,&nbsp;Richard G. Lathrop,&nbsp;Thomas E. Lee Jr,&nbsp;Christopher A. Lepczyk,&nbsp;Damon B. Lesmeister,&nbsp;Carissa Leung,&nbsp;Jason V. Lombardi,&nbsp;Robert Long,&nbsp;Robert C. Lonsinger,&nbsp;Isaac Lord,&nbsp;Steven S. Madere,&nbsp;Sean P. Maher,&nbsp;Jenifer A. Mallinoff,&nbsp;Andres Martinez,&nbsp;David S. Mason,&nbsp;Heather A. Mathewson,&nbsp;Amy E. Mayer,&nbsp;Kyle P. McCarthy,&nbsp;Shawn F. McCracken,&nbsp;Brandon McDonald,&nbsp;Brendan McGarry,&nbsp;Sierra T. McMurry,&nbsp;Leah E. McTigue,&nbsp;Brianna Marie Mena,&nbsp;Margaret Mercer,&nbsp;Margaret R. Merz,&nbsp;Sophie Millar,&nbsp;Geoffrey D. Miller,&nbsp;Joshua J. Millspaugh,&nbsp;Remington J. Moll,&nbsp;Tony W. Mong,&nbsp;Javier D. Monzón,&nbsp;John C. Moore,&nbsp;Alessio Mortelliti,&nbsp;Kelton W. Mote,&nbsp;Kayleigh Mullen,&nbsp;Alexis Mychajliw,&nbsp;Christopher Nagy,&nbsp;Sean A. Neiswenter,&nbsp;Drew R. Neyland,&nbsp;Laura P. Nicholson,&nbsp;M. Teague O'Mara,&nbsp;Brian J. O'Neill,&nbsp;Elizabeth A. Olson,&nbsp;Michael J. Orgill,&nbsp;Gabriela Palomo-Munoz,&nbsp;Shawn M. Parsons,&nbsp;Lorelei E. Patrick,&nbsp;Jessica R. Patterson,&nbsp;David L. Pearce,&nbsp;Mary E. Pendergast,&nbsp;Bianca S. Perla,&nbsp;Tyler R. Petroelje,&nbsp;Henry Pliske,&nbsp;Mairi K. P. Poisson,&nbsp;Melissa R. Price,&nbsp;Mike D. Proctor,&nbsp;Nathan J. Proudman,&nbsp;Janet L. Rachlow,&nbsp;Ramon E. Ramos,&nbsp;Miguel Reabold,&nbsp;Joseph Redinger,&nbsp;Adar E. Reed,&nbsp;Christine C. Rega-Brodsky,&nbsp;Evan Rehm,&nbsp;Kathryn R. Remine,&nbsp;Michael S. Rentz,&nbsp;Elizabeth Ridder,&nbsp;Derek R. Risch,&nbsp;Lydia L. Robbins,&nbsp;Justin P. Roemer,&nbsp;Andrea Romero,&nbsp;Christopher Rota,&nbsp;Christopher M. Schalk,&nbsp;Bradley D. Scholten,&nbsp;Christina L. Scott,&nbsp;Brandon M. Scurlock,&nbsp;Maksim Sergeyev,&nbsp;William J. Severud,&nbsp;Jennifer Sevin,&nbsp;Hila Shamon,&nbsp;Conan Sharp,&nbsp;Michael Shaw,&nbsp;Veronica Siverls-Dunham,&nbsp;Austin B. Smith,&nbsp;Daniel S. Smith,&nbsp;Matthew H. Snider,&nbsp;Daniel A. Sossover,&nbsp;Adia R. Sovie,&nbsp;J. Alan Sparks,&nbsp;Jessica Speiser,&nbsp;Matthew T. Springer,&nbsp;Jared L. Spurlin,&nbsp;Eric A. Steinkamp,&nbsp;Jennifer L. Stenglein,&nbsp;Joanne Stewart Kloker,&nbsp;Cassie M. Stitzman,&nbsp;Michael Stokes,&nbsp;Khloey Stringer,&nbsp;Johnathon Stutzman,&nbsp;Daniel S. Sullins,&nbsp;Cassandra Sullivan,&nbsp;Noah B. Sullivan,&nbsp;Evan P. Tanner,&nbsp;Ashley M. Tanner,&nbsp;Emily B. Thornock,&nbsp;Jack Titus,&nbsp;Jacquelyn M. Tleimat,&nbsp;Kenny Toomey,&nbsp;Luke T. Toussaint,&nbsp;Michael Uribe,&nbsp;Marius Van der Merwe,&nbsp;Dakota J. Van Parys,&nbsp;John P. Vanek,&nbsp;Johanna Varner,&nbsp;Brienna V. Walker,&nbsp;Cody Wallace,&nbsp;David Ward,&nbsp;Bethany H. Warner,&nbsp;Derick T. Warren,&nbsp;Joanne R. Wasdin,&nbsp;Stephen L. Webb,&nbsp;Katelyn L. Wehr,&nbsp;Nathaniel H. Wehr,&nbsp;Emily G. Weigel,&nbsp;Ty J. Werdel,&nbsp;Laura S. Whipple,&nbsp;Christopher A. Whittier,&nbsp;Chloe Wiersema,&nbsp;Andrew Mark Wilson,&nbsp;Margaret F. H. Wilson,&nbsp;Alexander J. Wolf,&nbsp;Justin P. Wolford,&nbsp;David W. Wolfson,&nbsp;Daniel J. Woolsey,&nbsp;Matthew Alan Wuensch,&nbsp;Gloria Xu,&nbsp;Kerry L. Yurewicz,&nbsp;Veronica Zancho,&nbsp;Marketa Zimova,&nbsp;Adam Zorn,&nbsp;William J. McShea","doi":"10.1111/geb.13941","DOIUrl":"10.1111/geb.13941","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Motivation</h3>\u0000 \u0000 <p>SNAPSHOT USA is an annual, multicontributor camera trap survey of mammals across the United States. The growing SNAPSHOT USA dataset is intended for tracking the spatial and temporal responses of mammal populations to changes in land use, land cover and climate. These data will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, as well as the impacts of species interactions on daily activity patterns.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Types of Variables Contained</h3>\u0000 \u0000 <p>SNAPSHOT USA 2019–2023 contains 987,979 records of camera trap image sequence data and 9694 records of camera trap deployment metadata.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Spatial Location and Grain</h3>\u0000 \u0000 <p>Data were collected across the United States of America in all 50 states, 12 ecoregions and many ecosystems.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period and Grain</h3>\u0000 \u0000 <p>Data were collected between 1st August and 29th December each year from 2019 to 2023.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa and Level of Measurement</h3>\u0000 \u0000 <p>The dataset includes a wide range of taxa but is primarily focused on medium to large mammals.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Software Format</h3>\u0000 \u0000 <p>SNAPSHOT USA 2019–2023 comprises two .csv files. The original data can be found within the SNAPSHOT USA Initiative in the Wildlife Insights platform.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Scale and the Underestimation of Stream Fish Community Invadedness 河流鱼类群落入侵的空间尺度与低估
IF 6.3 1区 环境科学与生态学
Global Ecology and Biogeography Pub Date : 2025-01-15 DOI: 10.1111/geb.13951
Lily M. Thompson, William K. Annis, Stephen R. Midway, Julian D. Olden, Brandon K. Peoples
{"title":"Spatial Scale and the Underestimation of Stream Fish Community Invadedness","authors":"Lily M. Thompson,&nbsp;William K. Annis,&nbsp;Stephen R. Midway,&nbsp;Julian D. Olden,&nbsp;Brandon K. Peoples","doi":"10.1111/geb.13951","DOIUrl":"10.1111/geb.13951","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Scale-Dependency of Native Status</h3>\u0000 \u0000 <p>Classifying populations as native or nonnative requires well-defined range boundaries for species. While many studies define native status according to large biogeographic realms, natural dispersal barriers often limit species distributions at regional or smaller spatial extents. As such, native/nonnative definitions are inherently scale-dependent and estimates of community invadedness thus depend on the spatial resolution at which native status is defined. For example, nonnative species can be introduced among realms, among regions within realms, and among ecological provinces within regions (hereafter, simply “provinces”). By explicitly considering the scale-dependency of native/nonnative status definitions, we can more effectively compare results across studies, more comprehensively evaluate the degree of invasion levels, and more objectively communicate the native status of a species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>30,034 stream segments, conterminous United States.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Time Period</h3>\u0000 \u0000 <p>2000–2023.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Major Taxa Studied</h3>\u0000 \u0000 <p>Freshwater fishes.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Quantifying Fish Community Invadedness Across US Streams</h3>\u0000 \u0000 <p>We illustrate the importance of scale-dependent native status definitions by quantifying nonnative species richness and relative abundance in stream fish communities across the United States, finding that provincially nonnative species are nearly four times as prevalent as extra-realm nonnative species, and represented approximately 10% of all individuals in average community surveys.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Implications</h3>\u0000 \u0000 <p>Unrealistically broad native status definitions underestimate community invadedness. Dismissing regionally and provincially nonnative species can have severe ecological consequences, including displacement and hybridisation with native species and the loss of unique communities through biotic homogenisation. These consequences may undermine efforts to maintain and protect distinct local biodiversity and conserve endemic species.</p>\u0000 </section>\u0000 </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信